Residual Axial Deformation and Buckling Analysis of Thin-Walled Carbon Fiber Fully Wound Composite Gas Cylinders
-
摘要: 针对钛合金薄壁内胆碳纤维全缠绕复合材料气瓶水压试验后轴向缩短及内胆局部发生屈曲失稳现象,开展了试验研究及有限元分析. 结果表明:自紧加卸载后,封头靠近极孔区域沿轴向向内凹陷,封头靠近赤道区域沿径向向外扩张,封头整体沿轴向变短,试验和有限元计算的轴向缩短量为6.15 mm和6.363 mm,误差为3.46%,有限元计算结果与试验结果具有很好的一致性. 最后,采用多极孔法优化封头纤维层厚度分布,封头厚度极值降低32.6%,过渡更加均匀,优化后的气瓶沿轴向略有伸长,平均伸长为0.6 mm,采用CT和内窥镜检测,内胆均未出现屈曲失稳,有效地解决了水压试验后轴向缩短及内胆屈曲问题.Abstract: Experimental research and finite element analysis were carried out to study the phenomenon of axial shortening and buckling instability of carbon fiber fully wound composite gas cylinders with titanium alloy thin-wall liners after hydraulic test. The results show that, after self-tightening and unloading, the area near the polar hole of the head will be concave axially, the area near the equator of the head will expand radially, and the whole head will become shorter axially. The axial shortening of the head will be 6.15 mm and 6.363 mm, respectively, and the error of the finite element calculation will be 3.46%. The finite element simulation results are in good agreement with the experimental results. Finally, the multi-pole hole method was used to optimize the thickness distribution of the fiber layer of the head, and the extreme thickness of the head was reduced by 32.6%, and the transition was made smoother. After the optimization, the gas cylinder will be slightly extended along the axis, with an average elongation of 0.6 mm. By CT and endoscope detections, no buckling instability would appear in the liner, which means an effective solution of the problems of axial shortening and liner buckling after hydraulic tests.
-
Key words:
- composite gas cylinder /
- thin-walled liner /
- titanium alloy /
- residual deformation /
- buckling
edited-byedited-by1) (我刊青年编委田阔推荐) -
表 1 气瓶水压试验数据
Table 1. Water pressure test data of the gas cylinder
cylinder number residual deformation after loading and unloading dR/mm is the liner buckling and instable? C1 -6.20 yes C2 -6.00 yes C3 -6.10 yes C4 -6.30 yes 表 2 钛合金试样拉伸性能测试数据
Table 2. Tensile property test data of titanium alloy specimens
number yield strength Rp0.2/MPa tensile strength Rm/MPa elastic modulus E/GPa S1 328.43 451.06 102.91 S2 322.39 447.26 101.65 S3 325.09 447.29 109.58 S4 321.63 446.45 105.57 S5 343.99 458.51 108.03 S6 348.93 465.95 107.41 S7 350.12 470.68 106.83 S8 347.16 465.40 108.16 表 3 钛内胆主要性能参数(前封头、前筒身段)
Table 3. Main performance parameters of the titanium liner (front head, front cylinder section)
elastic modulus E/GPa Poisson’s ratio μ yield strength Rp0.2/MPa tensile strength Rm/MPa elongation after fracture δ/% 104.9 0.3 324 448 32 表 4 钛内胆主要性能参数(后封头、后筒身段)
Table 4. Main performance parameters of the titanium liner (rear head, rear cylinder section)
elastic modulus E/GPa Poisson’s ratio μ yield strength Rp0.2/MPa tensile strength Rm/MPa elongation after fracture δ/% 107.6 0.3 347 465 34 表 5 T1000级碳纤维/环氧树脂层性能参数
Table 5. T1000 carbon fiber/epoxy resin layer performance parameters
E1/GPa E2/GPa E3/GPa μ12 μ23 μ13 G12/GPa G23/GPa G13/GPa 193.1 11.41 11.41 0.33 0.49 0.33 7.09 3.79 7.09 表 6 水压压力加卸载后各部分变形计算值
Table 6. Calculated deformation values of each part after hydraulic pressure loading and unloading
front head dFH/mm front body section dFB/mm rear body section dRB/mm rear head dRH/mm total dT/mm -3.297 1.318 1.530 -3.340 -6.363 -
[1] 冯雪, 沈俊, 田桂, 等. 复合材料压力容器在航天领域的应用研究[J]. 火箭推进, 2014, 40 (4): 35-42.FENG Xue, SHEN Jun, TIAN Gui, et al. Research of composite over-wrapper pressure vessels for space application[J]. Journal of Rocket Propulsion, 2014, 40 (4): 35-42. (in Chinese) [2] 陈绍杰. 先进复合材料的现状和趋势: 第二十二届欧洲SAMPE国际会议与第三十六届JEC复合材料展览会评述[J]. 高科技纤维与应用, 2001(3): 1-5.CHEN Shaojie. Synthesis actuality and direction of advanced composite material[J]. Hi-Tech Fiber and Application, 2001(3): 1-5. (in Chinese) [3] 谢清泉, 朱美丽, 司慧涵. 压力容器用复合材料的性能与应用[J]. 现代制造技术与装备, 2014(2): 32-33.XIE Qingquan, ZHU Meili, SI Huihan. Performance and application of composite materials for pressure vessels[J]. Modern Manufacturing Technology and Equipment, 2014(2): 32-33. (in Chinese) [4] KIM C U, KANG J H, HONG C S, et al. Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm[J]. Composite Structures, 2005, 67 (4): 443-453. doi: 10.1016/j.compstruct.2004.02.003 [5] 舒明杰, 李云仲, 刘翀. 复合材料压力容器自紧后残余变形研究及有限元分析[J]. 玻璃钢/复合材料, 2017(9): 73-77.SHU Mingjie, LI Yunzhong, LIU Chong. Residual deformation of composite pressure vessels after autofrettage and its finite element analysis[J]. Composites Science and Engineering, 2017(9): 73-77. (in Chinese) [6] 王欢, 余珊, 王特. 钛合金内衬碳纤维缠绕气瓶水压后轴向缩短分析[J]. 玻璃钢/复合材料, 2018(6): 34-38.WANG Huan, YU San, WANG Te. Axial shortening analysis of carbon filament-wound pressure cylinder with titanium alloy liner after hydrostatic test[J]. Composites Science and Engineering, 2018(6): 34-38. (in Chinese) [7] 王荣国, 赫晓东, 胡照会, 等. 超薄金属内衬复合材料压力容器的结构分析[J]. 复合材料学报, 2020(4): 131-138.WANG Rongguo, HE Xiaodong, HU Zhaohui, et al. Structure analysis of composite pressure vessel with ultra-thin metallic liner[J]. Acta Materiae Compositae Sinica, 2020(4): 131-138. (in Chinese) [8] MESSAGER T, PYRZ M, GINESTEC B, et al. Optimal laminations of thin underwater composite cylindrical vessels[J]. Composite Structures, 2002, 58 (4): 529-537. [9] 气瓶水压方法: GB/T 9251—2011[S]. 北京: 中国标准出版社, 2011.Method for hydrostatic test of gas cylinders: GB/T 9251—2011[S]. Beijing: Standards Press of China, 2011. (in Chinese) [10] 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021.Metallic materials, tensile testing, part 1: method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021. (in Chinese) [11] 吴世俊. 固体火箭发动机壳体不同开口比封头补强优化研究[D]. 合肥: 合肥工业大学, 2023.WU Shijun. Optimization research on head reinforcement with different opening ratios of solid rocket motor casing[D]. Hefei: Hefei University of Technology, 2023. (in Chinese)