留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负刚度扭转超结构力学性能研究

王钦泽 韩宾 郑培远 刘志鹏 张琦

王钦泽, 韩宾, 郑培远, 刘志鹏, 张琦. 负刚度扭转超结构力学性能研究[J]. 应用数学和力学, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082
引用本文: 王钦泽, 韩宾, 郑培远, 刘志鹏, 张琦. 负刚度扭转超结构力学性能研究[J]. 应用数学和力学, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082
WANG Qinze, HAN Bin, ZHENG Peiyuan, LIU Zhipeng, ZHANG Qi. Research on Mechanical Properties of Negative Stiffness Torsion Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082
Citation: WANG Qinze, HAN Bin, ZHENG Peiyuan, LIU Zhipeng, ZHANG Qi. Research on Mechanical Properties of Negative Stiffness Torsion Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082

负刚度扭转超结构力学性能研究

doi: 10.21656/1000-0887.450082
基金项目: 

国家自然科学基金 52250287

详细信息
    作者简介:

    王钦泽(2000—),男,硕士生(E-mail: a1309148215@stu.xjtu.edu.cn)

    通讯作者:

    韩宾(1986—),男,副教授,博士(通讯作者. E-mail: hanbinghost@mail.xjtu.edu.cn)

  • 中图分类号: O3

Research on Mechanical Properties of Negative Stiffness Torsion Metastructures

  • 摘要: 通过屈曲变形实现非损伤耗散能量的负刚度超结构,为可重复使用的缓冲防护器件提供了新的设计思路,但其耗散能力较弱、难以过载保护的缺点限制了实际应用. 为增强耗能性能及最大允许变形量,将负刚度铰接梁与具有压扭效应的斜杆串联组合,设计了一种负刚度扭转超结构,通过引入扭转变形缓解了过载导致的应力集中. 建立了负刚度扭转单元模型,通过刚度匹配设计实现了对力学性能的调控,使负刚度扭转超结构表现出突跳行为,产生加卸载曲线不重合的迟滞现象,从而极大地提高了能量耗散能力. 通过结构参数及刚度关系的优化设计,负刚度扭转超结构的最大等效压缩应变可达71%,相同层数下,能量耗散能力可以达到传统屈曲梁超结构的两倍.
  • 图  1  负刚度扭转单元力学响应

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Mechanical responses of negative stiffness torsion elements

    图  2  刚度匹配关系对串联单元力学响应的影响

    Figure  2.  The influences of stiffness matching relations on the mechanical responses of series elements

    图  3  串联单元仿真模型

    Figure  3.  The simplified series element simulation model

    图  4  刚度匹配关系对串联单元突跳行为的影响

    Figure  4.  The influences of stiffness matching relations on the snap-through behavior of series elements

    图  5  铰接梁角度φ对力学响应的影响

    Figure  5.  The influences of φ on mechanical responses

    图  6  铰接梁参数t/L对力学响应的影响

    Figure  6.  The influences of t/L on mechanical responses

    图  7  不同弹簧刚度下串联单元的力-位移曲线

    Figure  7.  The f-d curves of series elements

    图  8  不同刚度匹配关系对负刚度扭转单元力学响应的影响

    Figure  8.  Mechanical responses of negative stiffness torsion elements with different stiffness matching relations

    图  9  负刚度扭转超结构制备及装配

    Figure  9.  Fabrication and assembling of negative stiffness torsion metastructures

    图  10  不同铰接梁参数t/L下负刚度扭转超结构实验与仿真结果

    Figure  10.  Experiment and simulation results of negative stiffness torsion elements/metastructures with different t/L values

    图  11  不同斜杆参数t2/l2下负刚度扭转超结构实验与仿真结果

    Figure  11.  Experiment and simulation results of negative stiffness torsion elements/metastructures with different t2/l2 values

    图  12  重复性试验

    Figure  12.  Repetitive experiments

    图  13  负刚度扭转超结构压缩前后示意图

    Figure  13.  The diagram of the negative stiffness torsion metastructure before and after compression

    表  1  串联单元Ⅰ至Ⅶ的几何参数及负刚度

    Table  1.   The geometric parameters and negative stiffnesses of (No. Ⅰ~Ⅶ) series elements

    No. t t/L D/L φ/(°) K2/(N/mm) K4/(N/mm) Y
    1 0.044 0.17 145 -0.428 0.2 0.467
    1 0.044 0.17 150 -0.318 0.2 0.628
    1 0.044 0.17 155 -0.219 0.2 0.913
    1 0.044 0.17 160 -0.125 0.2 1.600
    0.45 0.02 0.17 150 -0.273 0.2 0.732
    1.35 0.06 0.17 150 -0.325 0.2 0.615
    1.80 0.08 0.17 150 -0.375 0.2 0.532
    下载: 导出CSV

    表  2  负刚度扭转子结构尺寸参数及刚度

    Table  2.   The geometric parameters and stiffnesses of negative stiffness torsion metastructures

    No. t t2 t/L t2/l2 φ/(°) K2/(N/mm) K4/(N/mm)
    U1 0.54 1 0.024 1 145 -0.235 0.35
    U2 1.125 1 0.050 1 145 -0.455 0.35
    U3 1 0.6 0.044 1 145 -0.428 0.29
    U4 1 2.6 0.044 4.3 145 -0.428 0.38
    下载: 导出CSV

    表  3  双层负刚度超结构耗散性能对比

    Table  3.   Comparisons of the dissipation performances of double-layer negative stiffness metastructures

    author η
    Tan et al. [19] 0.034
    Chen et al. [23] 0.042
    this paper 0.09
    下载: 导出CSV

    表  4  负刚度扭转超结构的最大等效压缩应变

    Table  4.   Maximum allowable compressive displacements of negative stiffness torsion metastructures

    No. H1/mm H2/mm $\tilde{\varepsilon}$/%
    U1 72 26 64
    U2 72 27 62
    U3 72 21 71
    U4 72 28 61
    下载: 导出CSV
  • [1] DARWISH Y, ELGAWADY M A. Numerical and experimental investigation of negative stiffness beams and honeycomb structures[J]. Engineering Structures, 2024, 301: 117163. doi: 10.1016/j.engstruct.2023.117163
    [2] LI X Y, WANG J X, CHAI Y J, et al. A novel frog-like meta-structure with linkage mechanism for low-frequency vibration isolation[J]. Journal of Physics D: Applied Physics, 2024, 57: 135304. doi: 10.1088/1361-6463/ad1851
    [3] 杨航, 马力. 多材料点阵结构的热可编程力学行为[J]. 应用数学和力学, 2022, 43(5): 534-552.

    YANG Hang, MA Li. Multimaterial lattice structures with thermally programmable mechanical behaviors[J]. Applied Mathematics and Mechanics, 2022, 43(5): 534-522. (in Chinese)
    [4] 王竞哲, 陈保才, 朱绍伟, 等. 圆锥形负刚度超材料吸能性能研究[J]. 应用数学和力学, 2023, 44(10): 1172-1179.

    WANG Jingzhe, CHEN Baocai, ZHU Shaowei, et al. Study on energy absorption performances of conical negative stiffness metamaterials[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1172-1179. (in Chinese)
    [5] VALENCIA C, RESTREPO D, MANKAME N D, et al. Computational characterization of the wave propagation behavior of multi-stable periodic cellular materials[J]. Extreme Mechanics Letters, 2019, 33(C): 100565.
    [6] GOLDSBERRY B M, HABERMAN M R. Negative stiffness honeycombs as tunable elastic metamaterials[J]. Journal of Applied Physics, 2018, 123(9): 091711. doi: 10.1063/1.5011400
    [7] FRAZIER M J. Multi-stable acoustic metamaterials with re-configurable mass distribution[J]. Journal of Applied Physics, 2022, 131(16): 165105. doi: 10.1063/5.0086214
    [8] HU N, LI B, BAI R Y, et al. A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots[J]. Research, 2023, 6: 0116. doi: 10.34133/research.0116
    [9] MUNGEKAR M, MA L X, YAN W Z, et al. Design of bistable soft deployable structures via a kirigami-inspired planar fabrication approach[J]. Advanced Materials Technologies, 2023, 8(16): 00088.
    [10] CHI Y D, HONG Y Y, ZHAO Y, et al. Snapping for high-speed and high-efficient butterfly stroke-like soft swimmer[J]. Science Advances, 2022, 8(46): eadd3788. doi: 10.1126/sciadv.add3788
    [11] WANG J, ZHAO T H, FAN Y Y, et al. Leveraging bioinspired structural constraints for tunable and programmable snapping dynamics in high-speed soft actuators[J]. Advanced Functional Materials, 2022, 33(2): 09798.
    [12] ZHOU S X, CAO J Y, ERTURK A, et al. Enhanced broadband piezoelectric energy harvesting using rotatable magnets[J]. Applied Physics Letters, 2013, 102(17): 173901. doi: 10.1063/1.4803445
    [13] ZHOU S X, CAO J Y, INMAN D J, et al. Broadband tristable energy harvester: modeling and experiment verification[J]. Applied Energy, 2014, 133: 33-39. doi: 10.1016/j.apenergy.2014.07.077
    [14] BARTON DAW, BURROW S G, CLARE L R. Energy harvesting from vibrations with a nonlinear oscillator[J]. Journal of Vibration and Acoustics, 2010, 132(2): 427-436.
    [15] SHAN S C, KANG S H, RANEY J R, et al. Multistable architected materials for trapping elastic strain energy[J]. Advanced Materials, 2015, 27(29): 4296-4301. doi: 10.1002/adma.201501708
    [16] FRENZEL T, FINDISEN C, KADIC M, et al. Tailoredbuckling microlattices as reusable light-weight shock absorbers[J]. Advanced Materials, 2016, 28(28): 5865-5870. doi: 10.1002/adma.201600610
    [17] WANG B, TAN X J, ZHU S W, et al. Cushion performance of cylindrical negative stiffness structures: analysis and optimization[J]. Composite Structures, 2019, 227: 111276. doi: 10.1016/j.compstruct.2019.111276
    [18] ZHANG Y, TICHEM M, VAN KEULEN F. A novel design of multi-stable metastructures for energy dissipation[J]. Materials Design, 2021, 212: 110234. doi: 10.1016/j.matdes.2021.110234
    [19] TAN X J, WANG L C, ZHU S W, et al. A general strategy for performance enhancement of negative stiffness mechanical metamaterials[J]. European Journal of Mechanics A: Solids, 2022, 96: 104702. doi: 10.1016/j.euromechsol.2022.104702
    [20] MENG Z Q, OUYANG Z, CHEN C Q. Multi-step metamaterials with two phases of elastic and plastic deformation[J]. Composite Structures, 2021, 271: 114152. doi: 10.1016/j.compstruct.2021.114152
    [21] SHI J H, MOFATTEH H, MIRABOLGHASEMI A, et al. Programmable multistable perforated shellular[J]. Advanced Materials, 2021, 33(42): 210243.
    [22] LIU S H, AZAD A, BURGUENO R. Architected materials for tailorable shear behavior with energy dissipation[J]. Extreme Mechanics Letters, 2019, 28: 1-7. doi: 10.1016/j.eml.2019.01.010
    [23] CHEN S, WANG B, ZHU S W, et al. A novel composite negative stiffness structure for recoverable trapping energy[J]. Composites Part A, 2020, 129: 105697. doi: 10.1016/j.compositesa.2019.105697
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  132
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-05-18
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回