留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于牵制触发控制动态网络的有限时间镇定

赵玮 任凤丽

赵玮, 任凤丽. 基于牵制触发控制动态网络的有限时间镇定[J]. 应用数学和力学, 2025, 46(3): 382-393. doi: 10.21656/1000-0887.450072
引用本文: 赵玮, 任凤丽. 基于牵制触发控制动态网络的有限时间镇定[J]. 应用数学和力学, 2025, 46(3): 382-393. doi: 10.21656/1000-0887.450072
ZHAO Wei, REN Fengli. Finite Time Stabilization of Dynamical Networks Under Pinning Event-Triggered Control[J]. Applied Mathematics and Mechanics, 2025, 46(3): 382-393. doi: 10.21656/1000-0887.450072
Citation: ZHAO Wei, REN Fengli. Finite Time Stabilization of Dynamical Networks Under Pinning Event-Triggered Control[J]. Applied Mathematics and Mechanics, 2025, 46(3): 382-393. doi: 10.21656/1000-0887.450072

基于牵制触发控制动态网络的有限时间镇定

doi: 10.21656/1000-0887.450072
基金项目: 

国家自然科学基金 61104031

详细信息
    作者简介:

    赵玮(1995—), 男, 硕士(E-mail: wzhao960@163.com)

    通讯作者:

    任凤丽(1978—), 女, 副教授, 博士(通讯作者. E-mail: flren@nuaa.edu.cn)

  • 中图分类号: O357.41

Finite Time Stabilization of Dynamical Networks Under Pinning Event-Triggered Control

  • 摘要: 该文研究了基于牵制触发控制动态网络的有限时间镇定. 不同于已有结果有限时间事件触发镇定, 考虑到控制成本和控制大规模节点数目的困难性, 提出了牵制自适应事件触发控制保证动态网络的有限时间镇定. 由于动态网络系统存在维数高的问题, 分析牵制事件触发有限时间镇定相当困难. 通过设计恰当的协议, 借助Lyapunov稳定性理论,得到了动态耦合网络有限时间镇定的充分性条件. 最后, 通过数值仿真验证了定理的有效性.
  • 图  1  混沌吸引子和耦合网络在牵制触发控制(6)的状态变量(2)

    Figure  1.  The chaotic attractor and the state trajectory (2) under pinning triggered control (6)

    图  2  受牵制节点的自适应反馈强度和触发次数

    Figure  2.  The adaptive feedback strength and the numbers of triggering times of pinned nodes

  • [1] CORTÉS J, BULLO F. Coordination and geometric optimization via distributed dynamical systems[J]. SIAM Journal on Control and Optimization, 2005, 44(5): 1543-1574. doi: 10.1137/S0363012903428652
    [2] REN W. Multi-vehicle consensus with a time-varying reference state[J]. Systems & Control Letters, 2007, 56(7/8): 474-483.
    [3] SMITH T R, HANSSMANN H, LEONARD N E. Orientation control of multiple underwater vehicles with symmetry-breaking potentials[C]//Proceedings of the 40 th IEEE Conference on Decision and Control. Orlando, FL, USA, 2001: 4598-4603.
    [4] BHAT S P, BERNSTEIN D S. Finite-time stability of homogeneous systems[C]//Proceedings of the 1997 American Control Conference. Albuquerque, NM, USA, 1997.
    [5] BHAT S P, BERNSTEIN D S. Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria[J]. SIAM Journal on Control and Optimization, 2003, 42(5): 1745-1775. doi: 10.1137/S0363012902407119
    [6] LU W, LIU X, CHEN T. A note on finite-time and fixed-time stability[J]. Neural Networks, 2016, 81: 11-15. doi: 10.1016/j.neunet.2016.04.011
    [7] ZIMENKO K, EFIMOV D, POLYAKOV A. On condition for output finite-time stability and adaptive finite-time control scheme[C]// 2019 IEEE 58 th Conference on Decision and Control (CDC). Nice, France, 2019.
    [8] HADDAD W M, LEE J. Finite-time stabilization and optimal feedback control for nonlinear discrete-time systems[J]. IEEE Transactions on Automatic Control, 2023, 68(3): 1685-1691. doi: 10.1109/TAC.2022.3151195
    [9] 赵玮, 任凤丽. 基于自适应控制的四元数时滞神经网络的有限时间同步[J]. 应用数学和力学, 2022, 43(1): 94-103. doi: 10.21656/1000-0887.420068

    ZHAO Wei, REN Fengli. Finite time adaptive synchronization of quaternion-value neural networks with time delays[J]. Applied Mathematics and Mechanics, 2022, 43(1): 94-103. (in Chinese) doi: 10.21656/1000-0887.420068
    [10] HONG Y, WANG J, CHENG D. Adaptive finite-time control of nonlinear systems with parametric uncertainty[J]. IEEE Transactions on Automatic Control, 2006, 51(5): 858-862. doi: 10.1109/TAC.2006.875006
    [11] IERVOLINO R, AMBROSINO R. Finite-time stabilization of state dependent impulsive dynamical linear systems[J]. Nonlinear Analysis: Hybrid Systems, 2023, 47: 101305. doi: 10.1016/j.nahs.2022.101305
    [12] WU F, LI C, LIAN J. Finite-time stability of switched nonlinear systems with state jumps: a dwell-time method[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2008, 52: 6061-6072.
    [13] 赵玮, 任凤丽. 基于牵制控制的多智能体系统的有限时间与固定时间一致性[J]. 应用数学和力学, 2021, 42(3): 299-307. doi: 10.21656/1000-0887.410190

    ZHAO Wei, REN Fengli. Finite-time and fixed-time consensus for multi-agent systems via pinning control[J]. Applied Mathematics and Mechanics, 2021, 42(3): 299-307. (in Chinese) doi: 10.21656/1000-0887.410190
    [14] LIN X, CHEN C C. Finite-time output feedback stabilization of planar switched systems with/without an output constraint[J]. Automatica, 2021, 131: 109728. doi: 10.1016/j.automatica.2021.109728
    [15] LI S, DU H, LIN X. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics[J]. Automatica, 2011, 47(8): 1706-1712. doi: 10.1016/j.automatica.2011.02.045
    [16] CHEN T, LU W, LIU X. Finite time convergence of pinning synchronization with a single nonlinear controller[J]. Neural Networks, 2021, 143: 246-249. doi: 10.1016/j.neunet.2021.05.036
    [17] CHEN G, LEWIS F L, XIE L. Finite-time distributed consensusvia binary control protocols[J]. Automatica, 2011, 47(9): 1962-1968. doi: 10.1016/j.automatica.2011.05.013
    [18] MATUSIK R, NOWAKOWSKI A, PLASKACZ S, et al. Finite-time stability for differential inclusions with applications to neural networks[J]. SIAM Journal on Control and Optimization, 2020, 58(5): 2854-2870. doi: 10.1137/19M1250078
    [19] CAO Y, REN W, MENG Z. Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking[J]. Systems & Control Letters, 2010, 59(9): 522-529.
    [20] HU B, GUAN Z H, FU M. Distributed event-driven control for finite-time consensus[J]. Automatica, 2019, 103: 88-95. doi: 10.1016/j.automatica.2019.01.026
    [21] WU L, LIU K, LÜ J, et al. Finite-time adaptive stability of gene regulatory networks[J]. Neurocomputing, 2019, 338: 222-232. doi: 10.1016/j.neucom.2019.02.011
    [22] HUANG J, WEN C, WANG W, et al. Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems[J]. Automatica, 2015, 51: 292-301. doi: 10.1016/j.automatica.2014.10.093
    [23] TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1680-1685. doi: 10.1109/TAC.2007.904277
    [24] WANG X, LEMMON M D. Event design in event-triggered feedback control systems[C]// 2008 47 th IEEE Conference on Decision and Control. Cancun, Mexico, 2008: 2105-2110.
    [25] DIMAROGONAS D V, FRAZZOLI E, JOHANSSON K H. Distributed event-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control, 2012, 57(5): 1291-1297. doi: 10.1109/TAC.2011.2174666
    [26] GHODRAT M, MARQUEZ H J. A new Lyapunov-based event-triggered control of linear systems[J]. IEEE Transactions on Automatic Control, 2023, 68(4): 2599-2606. doi: 10.1109/TAC.2022.3190028
    [27] LI H, LIAO X, HUANG T, et al. Event-triggering sampling based leader-following consensus in second-order multi-agent systems[J]. IEEE Transactions on Automatic Control, 2015, 60(7): 1998-2003. doi: 10.1109/TAC.2014.2365073
    [28] HE W, XU B, HAN Q L, et al. Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies[J]. IEEE Transactions on Cybernetics, 2019, 50(7): 2996-3008.
    [29] SUN Q, CHEN J, SHI Y. Event-triggered robust MPC of nonlinear cyber-physical systems against DoS attacks[J]. Science China Information Sciences, 2021, 65(1): 110202.
    [30] SHEN J, CAO J. Finite-time synchronization of coupled neural networksvia discontinuous controllers[J]. Cognitive Neurodynamics, 2011, 5(4): 373-385. doi: 10.1007/s11571-011-9163-z
    [31] LU W, CHEN T. New approach to synchronization analysis of linearly coupled ordinary differential systems[J]. Physica D: Nonlinear Phenomena, 2006, 213(2): 214-230. doi: 10.1016/j.physd.2005.11.009
    [32] HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.
    [33] YU W W, CHEN G R, LÜ J H, et al. Synchronization via pinning control on general complex networks[J]. SIAM Journal on Control and Optimization, 2013, 51(2): 21395-21416.
    [34] ZOU F, NOSSEK J A. Bifurcation and chaos in cellular neural networks[J]. IEEE Transactions on Circuits and Systems : Fundamental Theory and Applications, 1993, 40(3): 166-173.
  • 加载中
图(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  25
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 修回日期:  2024-05-22
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回