留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称正则长波方程的高效紧致差分格式

高晶英 何斯日古楞 青梅 额尔敦布和

高晶英, 何斯日古楞, 青梅, 额尔敦布和. 对称正则长波方程的高效紧致差分格式[J]. 应用数学和力学, 2025, 46(3): 412-424. doi: 10.21656/1000-0887.440374
引用本文: 高晶英, 何斯日古楞, 青梅, 额尔敦布和. 对称正则长波方程的高效紧致差分格式[J]. 应用数学和力学, 2025, 46(3): 412-424. doi: 10.21656/1000-0887.440374
GAO Jingying, HE Siriguleng, QING Mei, Eerdunbuhe. An Efficient Compact Difference Scheme for the Symmetric Regularized Long Wave Equation[J]. Applied Mathematics and Mechanics, 2025, 46(3): 412-424. doi: 10.21656/1000-0887.440374
Citation: GAO Jingying, HE Siriguleng, QING Mei, Eerdunbuhe. An Efficient Compact Difference Scheme for the Symmetric Regularized Long Wave Equation[J]. Applied Mathematics and Mechanics, 2025, 46(3): 412-424. doi: 10.21656/1000-0887.440374

对称正则长波方程的高效紧致差分格式

doi: 10.21656/1000-0887.440374
基金项目: 

国家自然科学基金 12161034

详细信息
    作者简介:

    何斯日古楞(1983—),男,教授,博士,硕士生导师(E-mail: Cmml2005@163.com)

    青梅(1986—),女,副教授,博士,硕士生导师(E-mail: bai.qingmei@163.com)

    额尔敦布和(1976—),男,教授,博士,硕士生导师(E-mail: eerdunbuhe@163.com)

    通讯作者:

    高晶英(1989—),男,副教授,博士(通讯作者. E-mail: minzugjy@email.imnc.edu.cn)

  • 中图分类号: O241.82

An Efficient Compact Difference Scheme for the Symmetric Regularized Long Wave Equation

  • 摘要: 为了求出对称正则长波(symmetric regularized long wave, SRLW)方程的数值解,构造了一种新的高效紧致有限差分格式.采用经典的Crank-Nicolson(C-N)格式和外推技术对时间方向一阶导数进行离散化,使用四阶Padé方法和逆紧致算子分别对空间方向一阶和二阶导数进行离散化,使得构造的格式具有线性、非耦合和紧致的特点,极大地提高了求解效率.此外,还对新格式进行了守恒律、先验估计、稳定性、收敛性分析,证明了其在时间上达到二阶、在空间上达到四阶收敛精度.最后,通过一个数值算例验证了理论的正确性和格式的高效性.
  • 图  1  u(x, t)和ρ(x, t)的三维效果

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The 3D images of u(x, t) and ρ(x, t)

    图  2  格式一与本文格式数值解误差比较

    Figure  2.  Comparison of errors between scheme 1 and the present scheme

    图  3  格式一与本文格式CPU时间比较

    Figure  3.  Comparison of CPU times between scheme 1 and the present scheme

    图  4  h=0.1, τ=0.01时,u(x, t)和ρ(x, t)长时间的波形

    Figure  4.  Waveforms of u(x, t) and ρ(x, t) for a long time with h=0.1, τ=0.01

    表  1  本文格式与格式一的误差、收敛阶和CPU时间

    Table  1.   The errors, convergence rates and CPU times of the present scheme and scheme 1

    (h, τ) present scheme scheme 1
    e(h, τ) uratex η(h, τ) ρratex tCPU/s e(h, τ) η(h, τ) tCPU/s
    τ=h2 $ \left(\frac{1}{4}, \frac{1}{16}\right)$ 1.263 4×10-2 - 1.704 9×10-2 - 1.03 3.937 0×10-3 5.587 9×10-3 9.57
    $ \left(\frac{1}{8}, \frac{1}{64}\right)$ 7.852 2×10-4 4.008 0 1.052 8×10-3 4.017 3 13.15 2.468 7×10-4 3.409 6×10-4 142.86
    $\left(\frac{1}{16}, \frac{1}{256}\right) $ 4.911 7×10-5 3.998 8 6.565 7×10-5 4.003 1 257.69 1.545 2×10-5 2.127 9×10-5 2 956.44
    h=τ $\left(\frac{1}{8}, \frac{1}{8}\right) $ 5.175 3×10-2 - 7.033 0×10-2 - 2.24 1.434 9×10-2 2.166 6×10-2 23.59
    $ \left(\frac{1}{16}, \frac{1}{16}\right)$ 1.269 2×10-2 2.027 7 1.712 9×10-2 2.037 6 15.25 3.510 0×10-3 5.024 3×10-3 206.61
    $\left(\frac{1}{32}, \frac{1}{32}\right) $ 3.160 4×10-3 2.005 7 4.245 4×10-3 2.012 4 159.42 8.787 4×10-4 1.226 7×10-3 2 472.98
    下载: 导出CSV

    表  2  h=0.1, τ=0.01时不同时刻离散质量和能量变化情况

    Table  2.   Discrete mass and energy changes at different moments with h=0.1, τ=0.01

    t Q1n Q2n En
    0 13.416 407 864 998 76 8.944 271 909 999 150 34.783 278 796 685 07
    2 13.416 407 864 975 92 8.944 271 909 999 168 34.783 287 701 975 17
    4 13.416 407 864 952 86 8.944 271 909 999 157 34.783 296 625 146 47
    6 13.416 407 864 928 57 8.944 271 909 999 122 34.783 305 535 423 96
    8 13.416 407 864 892 85 8.944 271 909 998 717 34.783 314 433 168 47
    10 13.416 407 864 750 97 8.944 271 909 994 891 34.783 323 323 411 79
    下载: 导出CSV
  • [1] SEYLER C E, FENSTERMACHER D L. A symmetric regularized-long-wave equation[J]. Physics of Fluids, 1984, 27(1): 4-7. doi: 10.1063/1.864487
    [2] PEREGRINE D H. Calculations of the development of an undular bore[J]. Journal of Fluid Mechanics, 1966, 25(2): 321-330. doi: 10.1017/S0022112066001678
    [3] WANG B, SUN T, LIANG D. The conservative and fourth-order compact finite difference schemes for regularized long wave equation[J]. Journal of Computational and Applied Mathematics, 2019, 356: 98-117. doi: 10.1016/j.cam.2019.01.036
    [4] 潘悦悦, 杨晓忠. KdV-Burgers方程的一类新本性并行差分格式[J]. 应用数学和力学, 2023, 44(5): 583-594. doi: 10.21656/1000-0887.430128

    PAN Yueyue, YANG Xiaozhong. A new class of difference schemes with intrinsic parallelism for the KdV-Burgers equation[J]. Applied Mathematics and Mechanics, 2023, 44(5): 583-594. (in Chinese) doi: 10.21656/1000-0887.430128
    [5] GUO B L. The spectral method for symmetric regularized wave equations[J]. Journal of Computational Mathematics, 1987, 5(4): 297-306.
    [6] 郑家栋, 张汝芬, 郭本瑜. SRLW方程的Fourier拟谱方法[J]. 应用数学和力学, 1989, 10(9): 843-852. http://www.applmathmech.cn/article/id/3603

    ZHENG Jiadong, ZHANG Rufen, GUO Benyu. The Fourier pseudo-spectral method for the SRLW equation[J]. Applied Mathematics and Mechanics, 1989, 10(9): 843-852. (in Chinese) http://www.applmathmech.cn/article/id/3603
    [7] 尚亚东, 郭柏灵. 多维广义SRLW方程的Chebyshev拟谱方法分析[J]. 应用数学和力学, 2003, 24(10): 1168-1183. http://www.applmathmech.cn/article/id/1536

    SHANG Yadong, GUO Boling. Analysis of Chebyshev pseudospectral method for multi-dimensional generalized SRLW equations[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1168-1183. (in Chinese) http://www.applmathmech.cn/article/id/1536
    [8] FANG S M, GUO B L, QIU H. The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 61-68. doi: 10.1016/j.cnsns.2007.07.001
    [9] 魏剑英, 葛永斌. 一种求解三维非稳态对流扩散反应方程的高精度有限差分格式[J]. 应用数学和力学, 2022, 43(2): 187-197. doi: 10.21656/1000-0887.420151

    WEI Jianying, GE Yongbin. A high-order finite difference scheme for 3D unsteady convection diffusion reaction equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 187-197. (in Chinese) doi: 10.21656/1000-0887.420151
    [10] WANG T, ZHANG L, CHEN F. Conservative schemes for the symmetric regularized long wave equations[J]. Applied Mathematics and Computation, 2007, 190(2): 1063-1080. doi: 10.1016/j.amc.2007.01.105
    [11] 王强, 何斯日古楞. 对称正则长波方程的两层差分方法[J]. 内蒙古大学学报(自然科学版), 2016, 47(6): 568-572.

    WANG Qiang, HE Siriguleng. Two-step difference method for the symmetric regularized long wave equation[J]. Journal of Inner Mongolia University (Natural Science Edition), 2016, 47(6): 568-572. (in Chinese)
    [12] 柏琰, 张鲁明. 对称正则长波方程的一个新的守恒差分格式[J]. 应用数学, 2009, 22(1): 130-136.

    BAI Yan, ZHANG Luming. A new conservative finite difference scheme for symmetric regularized long wave equations[J]. Mathematica Applicata, 2009, 22(1): 130-136. (in Chinese)
    [13] YIMNET S, WONGSAIJAI B, ROJSIRAPHISAL T, et al. Numerical implementation for solving the symmetric regularized long wave equation[J]. Applied Mathematics and Computation, 2016, 273: 809-825. doi: 10.1016/j.amc.2015.09.069
    [14] NIE T. A decoupled and conservative difference scheme with fourth-order accuracy for the symmetric regularized long wave equations[J]. Applied Mathematics and Computation, 2013, 219(17): 9461-9468. doi: 10.1016/j.amc.2013.03.076
    [15] HU J, ZHENG K, ZHENG M. Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation[J]. Applied Mathematical Modelling, 2014, 38(23): 5573-5581. doi: 10.1016/j.apm.2014.04.062
    [16] KERDBOON J, YIMNET S, WONGSAIJAI B, et al. Convergence analysis of the higher-order global mass-preserving numerical method for the symmetric regularized long-wave equation[J]. International Journal of Computer Mathematics, 2021, 98(5): 869-902. doi: 10.1080/00207160.2020.1792451
    [17] HE Y, WANG X, CHENG H, et al. Numerical analysis of a high-order accurate compact finite difference scheme for the SRLW equation[J]. Applied Mathematics and Computation, 2022, 418: 126837. doi: 10.1016/j.amc.2021.126837
    [18] LI S. Numerical study of a conservative weighted compact difference scheme for the symmetric regularized long wave equations[J]. Numerical Methods for Partial Differential Equations, 2019, 35(1): 60-83. doi: 10.1002/num.22285
    [19] HE Y Y, WANG X F, ZHONG R H. A new linearized fourth-order conservative compact difference scheme for the SRLW equations[J]. Advances in Computational Mathematics, 2022, 48: 27. doi: 10.1007/s10444-022-09951-5
    [20] YANG X J, ZHANG L, GE Y B. High-order compact finite difference schemes for solving the regularized long-wave equation[J]. Applied Numerical Mathematics, 2023, 185: 165-187. doi: 10.1016/j.apnum.2022.11.016
    [21] GAO J Y, HE S, BAI Q M, et al. A time two-mesh finite difference numerical scheme for the symmetric regularized long wave equation[J]. Fractal and Fractional, 2023, 7(6): 487. doi: 10.3390/fractalfract7060487
    [22] GAO J Y, BAI Q M, HE S, et al. New two-level time-mesh difference scheme for the symmetric regularized long wave equation[J]. Axioms, 2023, 12(11): 1057. doi: 10.3390/axioms12111057
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  31
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-07-16
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回