| [1] | 
				
					KUNZE M. Non-Smooth Dynamical Systems[M]. New York: Springer, 2000.
					 | 
			
		
				| [2] | 
				
					张伟, 胡海岩. 非线性动力学理论与应用的新进展[M]. 北京: 科学出版社, 2009.ZHANG Wei, HU Haiyan. New Advances in Nonlinear Dynamics Theory and Applications[M]. Beijing: Science Press, 2009. (in Chinese)
					 | 
			
		
				| [3] | 
				
					FENG Q, PFEIFFER F. Stochastic model on a rattling system[J]. Journal of Sound and Vibration, 1998,  215 (3): 439-453. doi:  10.1006/jsvi.1998.1646
					 | 
			
		
				| [4] | 
				
					FENG Q, HE H. Modeling of the mean Poincaré map on a class of random impact oscillators[J]. European Journal of Mechanics A: Solids, 2003,  22 (2): 267-281. doi:  10.1016/S0997-7538(03)00015-9
					 | 
			
		
				| [5] | 
				
					叶正伟, 邓生文, 梁相玲. Gauss白噪声激励下的永磁同步电动机模型的分岔分析[J]. 应用数学和力学, 2023,  44 (7): 884-894.YE Zhengwei, DENG Shengwen, LIANG Xiangling. Bifurcation analysis of the permanent magnet synchronous motor model under white Gaussian noises[J].  Applied Mathematics and Mechanics,  2023,  44 (7): 884-894. (in Chinese)
					 | 
			
		
				| [6] | 
				
					JING H S, YOUNG M. Random response of a single-degree-of-freedom vibro-impact system with clearance[J]. Earthquake Engineering & Structural Dynamics, 1990,  19 (6): 789-798.
					 | 
			
		
				| [7] | 
				
					JING H S, SHEU K C. Exact stationary solutions of the random response of a single-degree-of-freedom vibro-impact system[J].  Journal of Sound and Vibration,  1990,  141 (3): 363-373. doi:  10.1016/0022-460X(90)90632-A
					 | 
			
		
				| [8] | 
				
					HUANG Z L, LIU Z H, ZHU W Q. Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations[J].  Journal of Sound and Vibration,  2004,  275 (1): 223-240.
					 | 
			
		
				| [9] | 
				
					RONG H W, WANG X D, XU W, et al. Resonant response of a non-linear vibro-impact system to combined deterministic harmonic and random excitations[J].  International Journal of Non-Linear Mechanics, 2010,  45 (5): 474-481. doi:  10.1016/j.ijnonlinmec.2010.01.005
					 | 
			
		
				| [10] | 
				
					ZHU H T. Stochastic response of vibro-impact Duffing oscillators under external and parametric Gaussian white noises[J]. Journal of Sound and Vibration,  2014,  333 (3): 954-961. doi:  10.1016/j.jsv.2013.10.002
					 | 
			
		
				| [11] | 
				
					ZHU H T. Stochastic response of a vibro-impact Duffing system under external Poisson impulses[J]. Nonlinear Dynamics, 2015,  82 (1/2): 1001-1013.
					 | 
			
		
				| [12] | 
				
					孙娇娇, 徐伟, 林子飞, 等. 高斯色噪声激励下含黏弹力摩擦系统的随机响应分析[J]. 应用数学和力学, 2001,  22 (8): 852-861.SUN Jiaojiao, XU Wei, LIN Zifei, et al. Random response analysis of friction systems with viscoelastic forces under Gaussian colored noise excitation[J].  Applied Mathematics and Mechanics, 2001,  22 (8): 852-861. (in Chinese)
					 | 
			
		
				| [13] | 
				
					TIAN Y P, WANG Y, JIN X L, et al. Optimal load resistance of a randomly excited nonlinear electromagnetic energy harvester with Coulomb friction[J]. Smart Materials and Structures, 2014,  23 (9): 095001.
					 | 
			
		
				| [14] | 
				
					VIRGIN L N, BEGLEY C J. Grazing bifurcations and basins of attraction in an impact-friction oscillator[J]. Physica D: Nonlinear Phenomena, 1999,  130 (1/2): 43-57.
					 | 
			
		
				| [15] | 
				
					ANDREAUS U, CASINI P. Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle[J]. International Journal of Non-Linear Mechanics, 2002,  37 (1): 117-133
					 | 
			
		
				| [16] | 
				
					SU M, XU W, YANG G D. Stochastic response and stability of system with friction and a rigid barrier[J]. Mechanical Systems and Signal Processing, 2019,  132 : 748-761.
					 | 
			
		
				| [17] | 
				
					SU M, XU W, YANG G D. Response analysis of Van der Pol vibro-impact system with Coulomb friction under Gaussian white noise[J].  International Journal of Bifurcation and Chaos, 2018,  28 (13): 1830043
					 | 
			
		
				| [18] | 
				
					ZHURAVLEV V. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1976,  11 : 23-27.
					 | 
			
		
				| [19] | 
				
					OSELEDEC V I. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems[J]. Transactions of the Moscow Mathematical Society, 1968,  19 (2): 197-231.
					 |