留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对流粒子域插值物质点法的壳结构分析

王长生 于传泽 张向奎

王长生, 于传泽, 张向奎. 基于对流粒子域插值物质点法的壳结构分析[J]. 应用数学和力学, 2024, 45(9): 1147-1156. doi: 10.21656/1000-0887.440286
引用本文: 王长生, 于传泽, 张向奎. 基于对流粒子域插值物质点法的壳结构分析[J]. 应用数学和力学, 2024, 45(9): 1147-1156. doi: 10.21656/1000-0887.440286
WANG Changsheng, YU Chuanze, ZHANG Xiangkui. Shell Structure Analysis Based on the Convected Particle Domain Interpolation[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1147-1156. doi: 10.21656/1000-0887.440286
Citation: WANG Changsheng, YU Chuanze, ZHANG Xiangkui. Shell Structure Analysis Based on the Convected Particle Domain Interpolation[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1147-1156. doi: 10.21656/1000-0887.440286

基于对流粒子域插值物质点法的壳结构分析

doi: 10.21656/1000-0887.440286
基金项目: 

国家重点研发计划 2021YFB3300603

中央高校基本科研业务费 DUT22YG232

详细信息
    作者简介:

    王长生(1984—),男,副教授,博士(E-mail: changsheng@dlut.edu.cn)

    通讯作者:

    张向奎(1976—),男,教授,博士(通讯作者. E-mail: zhangxk@dlut.edu.cn)

  • 中图分类号: O34

Shell Structure Analysis Based on the Convected Particle Domain Interpolation

  • 摘要: 物质点法(material point method, MPM)采用Lagrange质点和Euler网格双重描述,适合处理大变形和接触问题. 该文基于对流粒子域插值物质点法(CPDI2)框架分析了薄壳结构的大变形问题:使用四边形网格来离散壳体结构,通过物质点到壳单元节点再到背景网格节点的双重映射计算基函数,在背景网格上求解动量方程,基于BT壳单元理论更新物质点的内力. 数值算例将受大变形的壳结构与参考解进行了比较,验证了该文方法的准确性.
  • 图  1  物质点到背景网格的二次映射过程

    Figure  1.  The 2-step mapping process from material points to background grids

    图  2  悬臂板的受力示意图、变形过程与计算结果

    Figure  2.  The force diagram, deformation process and calculation results of the cantilever

    图  3  半球壳的受力示意图、变形结果与计算结果

    Figure  3.  The force diagram, deformation process and calculation results of the spherical shell

    图  4  方管模型和本文算法(左侧)与LS-DYNA(右侧)的计算结果对比

    Figure  4.  The steel box beam model and the comparison between the results with this method(left) and the LS-DYNA(right)

    表  1  Utip的解析解与本文算法结果对比

    Table  1.   The comparison between the result obtained with this method and the exact solution of Utip

    P/Pmax Wtip Utip this papaer solution δ/%
    0.1 1.309 0.103 0.100 2.9
    0.2 2.493 0.381 0.374 1.8
    0.3 3.488 0.763 0.749 1.8
    0.4 4.292 1.184 1.167 1.4
    0.5 4.933 1.604 1.585 1.2
    0.6 5.444 2.002 1.981 1.0
    0.7 5.855 2.370 2.345 1.1
    0.8 6.190 2.705 2.678 1.0
    0.9 6.467 3.010 2.978 1.1
    1.0 6.698 3.286 3.259 0.8
    下载: 导出CSV

    表  2  VA的解析解与本文算法结果对比

    Table  2.   The comparison between the results with this method and the exact solution of VA

    P/Pmax UB VA this papaer solution δ/%
    0.1 1.840 1.499 1.472 1.8
    0.2 3.261 2.321 2.287 1.5
    0.3 4.339 2.819 2.791 1.0
    0.4 5.196 3.158 3.104 1.7
    0.5 5.902 3.406 3.372 1.0
    0.6 6.497 3 598 3.523 2.1
    0.7 7.006 3.750 3.701 1.3
    0.8 7.448 3.875 3.872 0.1
    0.9 7.835 3.976 3.944 0.8
    1.0 8.178 4.067 4.050 0.4
    下载: 导出CSV
  • [1] SULSKY Z, CHEN H, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179-196.
    [2] 周晓敏, 孙政. 非Newton流体的物质点法模拟研究[J]. 应用数学和力学, 2019, 40(10): 1135-1146. doi: 10.21656/1000-0887.390349

    ZHOU Xiaomin, SUN Zheng. Simulation of non-Newtonian fluid flows with the material point method[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1135-1146. (in Chinese) doi: 10.21656/1000-0887.390349
    [3] STEFFEN M, WALLSTEDT P C, GUILKEY J E, et al. Examination and analysis of implementation choices within the material point method (MPM)[J]. Computer Modeling in Engineering and Sciences, 2008, 31(2): 107-127.
    [4] 徐云卿, 周晓敏, 赵世一, 等. 基于B样条物质点法的溃坝流模拟研究[J]. 应用数学和力学, 2023, 44(8): 921-930. doi: 10.21656/1000-0887.430363

    XU Yunqing, ZHOU Xiaomin, ZHAO Shiyi, et al. Simulation study on dam break flow based on the B-spline material point method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 921-930. (in Chinese) doi: 10.21656/1000-0887.430363
    [5] ZHANG D Z, MA X, GIGUERE P T. Material point method enhanced by modified gradient of shape function[J]. Journal of Computational Physics, 2011, 230(16): 6379-6398. doi: 10.1016/j.jcp.2011.04.032
    [6] MOUTSANIDIS G, LONG C C, BAZILEVS Y. IGA-MPM: the isogeometric material point method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113346. doi: 10.1016/j.cma.2020.113346
    [7] BARDENHAGEN S G, KOBER E M. The generalized interpolation material point method[J]. Computer Modeling in Engineering and Sciences, 2004, 5(6): 477-496.
    [8] SADEGHIRAD A, BRANNON R M, BURGHARDT J. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(12): 1435-1456.
    [9] SADEGHIRAD A, BRANNON R M, GUILKEY J E. Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces[J]. International Journal for Numerical Methods in Engineering, 2013, 95(11): 928-952.
    [10] WAN D, WANG M, ZHU Z, et al. Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture[J]. International Journal of Mining Science and Technology, 2022, 32(5): 1097-1114.
    [11] WANG C S, DONG G W, ZHANG Z G, et al. Generalized particle domain method: an extension of material point method generates particles from the CAD files[J]. International Journal for Numerical Methods in Engineering, 2024, 125(17): e7537.
    [12] NGUYEN V P, DE VAUCORBEIL A, BORDAS S. The Material Point Method: Theory, Implementations and Applications[M]. Berlin: Springer Cham, 2023.
    [13] KANG J, HOMEL M A, HERBOLD E B. Beam elements with frictional contact in the material point method[J]. International Journal for Numerical Methods in Engineering, 2022, 123(4): 1013-1035.
    [14] WU S R, GU L. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics[M]. Wiley, 2012.
    [15] JIANG C, GAST T, TERAN J. Anisotropic elastoplasticity for cloth, knit and hair frictional contact[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14.
    [16] GUO Q, HAN X, FU C, et al. A material point method for thin shells with frictional contact[J]. ACM Transactions on Graphics, 2018, 37(4): 1-15. http://www.onacademic.com/detail/journal_1000040466349010_4901.html
    [17] WU B, CHEN Z, ZHANG X, et al. Coupled shell-material point method for bird strike simulation[J]. Acta Mechanica Solida Sinica, 2018, 31(1): 1-18.
    [18] DE VAUCORBEIL A, NGUYEN V P. Modelling contacts with a total Lagrangian material point method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113503.
    [19] NI R, LI J, ZHANG X, et al. An immersed boundary-material point method for shock-structure interaction and dynamic fracture[J]. Computer Physics Communications, 2022, 470: 111558.
    [20] LI J, NI R, ZENG Z, et al. An efficient solid shell material point method for large deformation of thin structures[J]. International Journal for Numerical Methods in Engineering, 2024, 125(1): e7359.
    [21] FLANAGAN D P, BELYTSCHK T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J]. International Journal for Numerical Methods in Engineering, 1981, 17(5): 679-706.
    [22] BELYSCHKO T, TSAY C S. A stabilization procedure for the quadrilateral plate element with one-point quadrature[J]. International Journal for Numerical Methods in Engineering, 1983, 19(3): 405-419.
    [23] BELYTSCHKO T, LIN J I, TSAY C S. Explicit algorithms for the nonlinear dynamics of shell[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 42(2): 225-251.
    [24] 钟志华, 李光耀. 薄板冲压成型过程的计算机仿真与应用[M]. 北京: 北京理工大学出版社, 1998.

    ZHONG Zhihua, LI Guangyao. Simulation and Application of Sheet Metal Stamping Process[M]. Beijing: Beijing Institute of Technology Press, 1998. (in Chinese)
    [25] SZE K Y, LIU X H, LO S H. Popular benchmark problems for geometric nonlinear analysis of shells[J]. Finite Elements in Analysis & Design, 2004, 40(11): 1551-1569.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  35
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2024-01-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回