Shell Structure Analysis Based on the Convected Particle Domain Interpolation
-
摘要: 物质点法(material point method, MPM)采用Lagrange质点和Euler网格双重描述,适合处理大变形和接触问题. 该文基于对流粒子域插值物质点法(CPDI2)框架分析了薄壳结构的大变形问题:使用四边形网格来离散壳体结构,通过物质点到壳单元节点再到背景网格节点的双重映射计算基函数,在背景网格上求解动量方程,基于BT壳单元理论更新物质点的内力. 数值算例将受大变形的壳结构与参考解进行了比较,验证了该文方法的准确性.
-
关键词:
- 对流粒子域插值物质点法 /
- BT壳单元 /
- 超弹性材料 /
- 非线性大变形
Abstract: The material point method (MPM) adopts the dual description of Lagrangian particles and Euler grids, so it can deal with large deformation and contact problems conveniently. The large deformation problem of thin shell structures was analyzed based on the framework of the convected particle domain interpolation material point method (CPDIMPM). The quadrilateral mesh was used to discretize the shell structure. The basis function was calculated by the double mapping from the material point to the shell element node and then to the background grid node. The momentum equation was solved on the background grid, and the internal force of the material point was updated based on the Belytschko-Tsay (BT) shell element theory. In the numerical example, the comparison of large deformations of the shell structure with reference solutions verifies the accuracy of the proposed method.-
Key words:
- CPDIMPM /
- BT shell element /
- hyperelastic material /
- nonlinear large deformation
-
表 1 Utip的解析解与本文算法结果对比
Table 1. The comparison between the result obtained with this method and the exact solution of Utip
P/Pmax Wtip Utip this papaer solution δ/% 0.1 1.309 0.103 0.100 2.9 0.2 2.493 0.381 0.374 1.8 0.3 3.488 0.763 0.749 1.8 0.4 4.292 1.184 1.167 1.4 0.5 4.933 1.604 1.585 1.2 0.6 5.444 2.002 1.981 1.0 0.7 5.855 2.370 2.345 1.1 0.8 6.190 2.705 2.678 1.0 0.9 6.467 3.010 2.978 1.1 1.0 6.698 3.286 3.259 0.8 表 2 VA的解析解与本文算法结果对比
Table 2. The comparison between the results with this method and the exact solution of VA
P/Pmax UB VA this papaer solution δ/% 0.1 1.840 1.499 1.472 1.8 0.2 3.261 2.321 2.287 1.5 0.3 4.339 2.819 2.791 1.0 0.4 5.196 3.158 3.104 1.7 0.5 5.902 3.406 3.372 1.0 0.6 6.497 3 598 3.523 2.1 0.7 7.006 3.750 3.701 1.3 0.8 7.448 3.875 3.872 0.1 0.9 7.835 3.976 3.944 0.8 1.0 8.178 4.067 4.050 0.4 -
[1] SULSKY Z, CHEN H, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179-196. [2] 周晓敏, 孙政. 非Newton流体的物质点法模拟研究[J]. 应用数学和力学, 2019, 40(10): 1135-1146. doi: 10.21656/1000-0887.390349ZHOU Xiaomin, SUN Zheng. Simulation of non-Newtonian fluid flows with the material point method[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1135-1146. (in Chinese) doi: 10.21656/1000-0887.390349 [3] STEFFEN M, WALLSTEDT P C, GUILKEY J E, et al. Examination and analysis of implementation choices within the material point method (MPM)[J]. Computer Modeling in Engineering and Sciences, 2008, 31(2): 107-127. [4] 徐云卿, 周晓敏, 赵世一, 等. 基于B样条物质点法的溃坝流模拟研究[J]. 应用数学和力学, 2023, 44(8): 921-930. doi: 10.21656/1000-0887.430363XU Yunqing, ZHOU Xiaomin, ZHAO Shiyi, et al. Simulation study on dam break flow based on the B-spline material point method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 921-930. (in Chinese) doi: 10.21656/1000-0887.430363 [5] ZHANG D Z, MA X, GIGUERE P T. Material point method enhanced by modified gradient of shape function[J]. Journal of Computational Physics, 2011, 230(16): 6379-6398. doi: 10.1016/j.jcp.2011.04.032 [6] MOUTSANIDIS G, LONG C C, BAZILEVS Y. IGA-MPM: the isogeometric material point method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113346. doi: 10.1016/j.cma.2020.113346 [7] BARDENHAGEN S G, KOBER E M. The generalized interpolation material point method[J]. Computer Modeling in Engineering and Sciences, 2004, 5(6): 477-496. [8] SADEGHIRAD A, BRANNON R M, BURGHARDT J. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(12): 1435-1456. [9] SADEGHIRAD A, BRANNON R M, GUILKEY J E. Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces[J]. International Journal for Numerical Methods in Engineering, 2013, 95(11): 928-952. [10] WAN D, WANG M, ZHU Z, et al. Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture[J]. International Journal of Mining Science and Technology, 2022, 32(5): 1097-1114. [11] WANG C S, DONG G W, ZHANG Z G, et al. Generalized particle domain method: an extension of material point method generates particles from the CAD files[J]. International Journal for Numerical Methods in Engineering, 2024, 125(17): e7537. [12] NGUYEN V P, DE VAUCORBEIL A, BORDAS S. The Material Point Method: Theory, Implementations and Applications[M]. Berlin: Springer Cham, 2023. [13] KANG J, HOMEL M A, HERBOLD E B. Beam elements with frictional contact in the material point method[J]. International Journal for Numerical Methods in Engineering, 2022, 123(4): 1013-1035. [14] WU S R, GU L. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics[M]. Wiley, 2012. [15] JIANG C, GAST T, TERAN J. Anisotropic elastoplasticity for cloth, knit and hair frictional contact[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14. [16] GUO Q, HAN X, FU C, et al. A material point method for thin shells with frictional contact[J]. ACM Transactions on Graphics, 2018, 37(4): 1-15. http://www.onacademic.com/detail/journal_1000040466349010_4901.html [17] WU B, CHEN Z, ZHANG X, et al. Coupled shell-material point method for bird strike simulation[J]. Acta Mechanica Solida Sinica, 2018, 31(1): 1-18. [18] DE VAUCORBEIL A, NGUYEN V P. Modelling contacts with a total Lagrangian material point method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113503. [19] NI R, LI J, ZHANG X, et al. An immersed boundary-material point method for shock-structure interaction and dynamic fracture[J]. Computer Physics Communications, 2022, 470: 111558. [20] LI J, NI R, ZENG Z, et al. An efficient solid shell material point method for large deformation of thin structures[J]. International Journal for Numerical Methods in Engineering, 2024, 125(1): e7359. [21] FLANAGAN D P, BELYTSCHK T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J]. International Journal for Numerical Methods in Engineering, 1981, 17(5): 679-706. [22] BELYSCHKO T, TSAY C S. A stabilization procedure for the quadrilateral plate element with one-point quadrature[J]. International Journal for Numerical Methods in Engineering, 1983, 19(3): 405-419. [23] BELYTSCHKO T, LIN J I, TSAY C S. Explicit algorithms for the nonlinear dynamics of shell[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 42(2): 225-251. [24] 钟志华, 李光耀. 薄板冲压成型过程的计算机仿真与应用[M]. 北京: 北京理工大学出版社, 1998.ZHONG Zhihua, LI Guangyao. Simulation and Application of Sheet Metal Stamping Process[M]. Beijing: Beijing Institute of Technology Press, 1998. (in Chinese) [25] SZE K Y, LIU X H, LO S H. Popular benchmark problems for geometric nonlinear analysis of shells[J]. Finite Elements in Analysis & Design, 2004, 40(11): 1551-1569.