留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴冲击过程动态接触角模型研究

王翔宇 柯鹏 杜锋

王翔宇, 柯鹏, 杜锋. 液滴冲击过程动态接触角模型研究[J]. 应用数学和力学, 2024, 45(9): 1133-1146. doi: 10.21656/1000-0887.440282
引用本文: 王翔宇, 柯鹏, 杜锋. 液滴冲击过程动态接触角模型研究[J]. 应用数学和力学, 2024, 45(9): 1133-1146. doi: 10.21656/1000-0887.440282
WANG Xiangyu, KE Peng, DU Feng. Research on the Dynamic Contact Angle Model for the Droplet Impact Process[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1133-1146. doi: 10.21656/1000-0887.440282
Citation: WANG Xiangyu, KE Peng, DU Feng. Research on the Dynamic Contact Angle Model for the Droplet Impact Process[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1133-1146. doi: 10.21656/1000-0887.440282

液滴冲击过程动态接触角模型研究

doi: 10.21656/1000-0887.440282
基金项目: 

国家自然科学基金 12372095

详细信息
    作者简介:

    王翔宇(1999—),男,硕士生(E-mail: zy2213412@buaa.edu.cn)

    通讯作者:

    杜锋(1987—),男,副教授,博士(通讯作者. E-mail: fengdu@buaa.edu.cn)

  • 中图分类号: O359+.1

Research on the Dynamic Contact Angle Model for the Droplet Impact Process

  • 摘要: 基于计算流体力学(CFD)模拟液滴冲击壁面,对于理解液滴在固体壁面铺展的动力学行为有重要的意义,可以为超疏水结构设计及防除冰涂层开发提供技术支撑,其中的难点在于如何在模型中准确刻画接触线及动态接触角的演化过程. 总结了四种典型的动态接触角模型,从理论上分析了其应用范围,借助FLUENT中的UDF功能,将动态接触角模型应用于壁面边界条件. 首先对液滴冲击光滑壁面的动力学过程进行了数值模拟研究,通过定量分析液滴形态的各项参数变化并与实验结果对比表明,Seebergh动态接触角模型更适用于模拟低毛细数下液滴的运动,Kistler模型与Jiang模型应用范围更广并且可以较准确地描述高毛细数下液滴的运动. 随后基于Kistler动态接触角模型,对液滴在微结构表面的冲击与铺展过程进行了仿真研究,发现应用动态接触角模型会导致液滴内部流场在表面张力起主导作用的阶段内发生变化,并且在平衡状态下液滴接触角的模拟值与理论值相近.
  • 图  1  不同平衡接触角下CaθD的对应关系

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The relationships between Ca and θD under different equilibrium contact angles

    图  2  物理模型及网格示意图

    Figure  2.  The physical model and the grid

    图  3  在工况1中采用Kistler模型模拟所得结果与实验对比

    Figure  3.  Comparison between simulation results and experiments in condition 1 with the Kistler model

    图  4  工况1中D/D0H/D0随时间变化曲线

    Figure  4.  The variations of D/D0 and H/D0 with time in condition 1

    图  5  工况3中D/D0H/D0随时间变化曲线

    Figure  5.  The variations of D/D0 and H/D0 with time in condition 3

    图  6  工况4中D/D0H/D0随时间变化曲线

    Figure  6.  The variations of D/D0 and H/D0 with time in condition 4

    图  7  四种模型在工况3、4、5中模拟所得D/D0H/D0随时间变化曲线

    Figure  7.  The time variations of D/D0 and H/D0 simulated with 4 models in conditions 3, 4 and 5

    图  8  采用Kistler模型与Jiang模型在工况2、6、7中模拟所得接触角随时间变化曲线

    Figure  8.  The temperal variations of contact angles simulated with the Kistler and Jiang models in conditions 2, 6 and 7

    图  9  采用Kistler模型与Jiang模型在工况6中模拟所得D/D0H/D0随时间变化曲线

    Figure  9.  The temperal variations of D/D0 and H/D0 simulated with the Kistler and Jiang models in condition 6

    图  10  环形槽状微结构仿真模型与平衡接触角测量值

    Figure  10.  The physical model for the annular groove microstructure and the measurement of the equilibrium contact angle

    图  11  应用Kistler动态接触角模型计算工况8液滴冲击过程内部流场云图

    Figure  11.  Internal flow field contours of the droplet impact process in condition 8 with the Kistler model

    图  12  静态与动态接触角模型局部涡流对比

    Figure  12.  Comparison of local eddy currents between static and dynamic contact angle models

    图  13  降低We数后静态与动态接触角模型局部涡流对比

    Figure  13.  Comparison of local eddy currents between static and dynamic contact angle models with a lower We number

    图  14  降低本征接触角后静态与动态接触角模型局部涡流对比

    Figure  14.  Comparison of local eddy currents between static and dynamic contact angle models with a lower θY value

    图  15  三维方柱微结构仿真模型与多面体网格

    Figure  15.  The 3-D square column microstructure simulation model with polyhedral meshes

    图  16  液滴发生煎饼弹跳过程与实验对比

    Figure  16.  Comparison of the pancake bouncing processes of the droplet between the simulation and the experiment

    图  17  文献[25]实验工况下D/D0H/D0计算结果

    Figure  17.  Calculations of D/D0 and H/D0 under experimental conditions in ref. [25]

    图  18  4 ms与7.5 ms时液滴轮廓及内部流场

    Figure  18.  Droplet profiles and internal flow fields at 4 ms and 7.5 ms

    表  1  计算工况

    Table  1.   Calculation conditions

    condition wall liquid diameter D0/mm impact velocity v/(m/s) contact angle θ/(°) We Re Ca
    1 plane water 2.45 1.64 105,95 90.0 4 010 0.023
    2 glycerol 2.45 1.41 97,90 94.0 36 2.590
    3 water 2.47 0.21 63.4 1.5 523 0.003
    4 water 2.47 0.21 100 1.5 523 0.003
    5 water 2.47 0.21 160 1.5 523 0.003
    6 glycerol 2.45 1.41 17,13 94.0 36 2.590
    7 glycerol 2.45 1.41 160 94.0 36 2.590
    8 micro structure water 2.00 1.00 165,155 27.0 2 000 0.014
    8 water 2.00 0.50 165,155 13.5 1 000 0.007
    10 water 2.00 1.00 95,85 27.0 2 000 0.014
    11 water 2.90 0.34 165,155 4.7 984 0.005
    下载: 导出CSV
  • [1] ZHU Y T, WANG Z L L, LIU X L, et al. Anti-icing/de-icing mechanism and application progress of bio-inspired surface for aircraft[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 39(5): 542-554.
    [2] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.

    LIN Guiping, BU Xueqin, SHEN Xiaobin, et al. Aircraft Icing and Anti-icing Technology[M]. Beijing: Beihang University Press, 2016. (in Chinese)
    [3] 张旋. 过冷水滴的结冰与碰撞及其耦合特性研究[D]. 北京: 清华大学, 2019.

    ZHANG Xuan. Research on freezing and impact processes of supercooled water droplet and their coupling characteristics[D]. Beijing: Tsinghua University, 2019. (in Chinese)
    [4] 王凯宇, 庞祥龙, 李晓光. 超疏水表面液滴的振动特性及其与液滴体积的关系[J]. 物理学报, 2021, 70(7): 076801.

    WANG Kaiyu, PANG Xianglong, LI Xiaoguang. Oscillation properties of water droplets on a superhydrophobic surface and their correlations with droplet volume[J]. Acta Physica Sinica, 2021, 70(7): 076801. (in Chinese)
    [5] PANG X L, DUAN M, LIU H, et al. Oscillation-induced mixing advances the functionality of liquid marble microreactors[J]. ACS Applied Materials & Interfaces, 2022, 14: 11999.
    [6] 严裕, 娄钦, 陈家豪. 双液滴在具有接触角滞后性微通道内的运动行为研究[J]. 应用数学和力学, 2023, 44(3): 304-318. doi: 10.21656/1000-0887.430165

    YAN Yu, LOU Qin, CHEN Jiahao. Lattice Boltzmann study on the motion of dual droplets in microchannels with contact angle hysteresis[J]. Applied Mathematics and Mechanics, 2023, 44(3): 304-318. (in Chinese) doi: 10.21656/1000-0887.430165
    [7] 焦云龙, 刘小君, 逄明华, 等. 液滴平壁铺展过程中的滞后效应及力学机制研究[J]. 应用数学和力学, 2016, 37(1): 14-26. doi: 10.3879/j.issn.1000-0887.2016.01.002

    JIAO Yunlong, LIU Xiaojun, PANG Minghua, et al. Study of contact angle hysteresis at moving contact lines based on CFD simulation and mechanical analysis[J]. Applied Mathematics and Mechanics, 2016, 37(1): 14-26. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.01.002
    [8] LI X G, WANG Y Q, YANG Y, et al. Dynamic behavior of droplets under interfacial jamming of nanoparticles[J]. Applied Physics Letters, 2018, 113: 133702. doi: 10.1063/1.5045775
    [9] MOHAMMAD K A, SUSZYNSKI W J. Physics of dynamic contact line: hydrodynamics theory versus molecular kinetic theory[J]. Fluids, 2022, 7(10): 1-19.
    [10] GANESAN S. On the dynamic contact angle in simulation of impinging droplets with sharp interface methods[J]. Microfluidics and Nanofluidics, 2013, 14(3/4): 615-625.
    [11] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [12] HOFFMAN R L. A study of the advancing interface[J]. Journal of Colloid and Interface Science, 1975, 50(2): 228-241. doi: 10.1016/0021-9797(75)90225-8
    [13] VOINOV O V. Hydrodynamics of wetting[J]. Fluid Dynamics, 1977, 11(5): 714-721. doi: 10.1007/BF01012963
    [14] JIANG T S, SOO-GUN O H, SLATTERY J C. Correlation for dynamic contact angle[J]. Journal of Colloid and Interface Science, 1979, 69(1): 74-77. doi: 10.1016/0021-9797(79)90081-X
    [15] BRACKE M, DE VOEGHT F, JOOS P. The kinetics of wetting: the dynamic contact angle[J]. Progress in Colloid & Polymer Science, 1989, 79: 142-149.
    [16] SEEBERGH J E, BERG J C. Dynamic wetting in the low capillary number regime[J]. Chemical Engineering Science, 1992, 47(17/18): 4455-4464.
    [17] BLAKE T D, BRACKE M, SHIKHMURZAEV Y D. Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle[J]. Physics of Fluids, 1999, 11(8): 1995-2007.
    [18] COX R G. The dynamics of the spreading of liquids on a solid surface, part 1: viscous flow[J]. Journal of Fluid Mechanics, 1986, 168: 169-194.
    [19] ŠIKALO Š, WILHELM H D, ROISMAN I V, et al. Dynamic contact angle of spreading droplets: experiments and simulations[J]. Physics of Fluids, 2005, 17(6): 062103.
    [20] XIE P, DING H B, INGHAM D B, et al. Analysis and prediction of the gas-liquid interfacial area for droplets impact on solid surfaces[J]. Applied Thermal Engineering, 2020, 178: 115583.
    [21] WENZEL R N. Resistance of solid surface to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
    [22] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(10): 546-551.
    [23] TUTEJA A, CHOI W, MA M L, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622.
    [24] LIU Y H, MOEVIUS L, XU X P, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10: 515-519.
    [25] MOEVIUS L, LIU Y H, WANG Z K, et al. Pancake bouncing: simulations and theory and experimental verification[J]. Langmuir, 2014, 30: 13021-13032.
    [26] DU J Y, WANG X, LI Y Z, et al. Maximum spreading of liquid droplets impact on concentric ring-textured surfaces: theoretical analysis and numerical simulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127647.
    [27] YANG C J, CAO W R, YANG Z. Study on dynamic behavior of water droplet impacting on super-hydrophobic surface with micro-pillar structures by VOF method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127634.
    [28] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
    [29] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
    [30] ŠIKALO Š, MARENGO M, TROPEA C, et al. Analysis of impact of droplets on horizontal surfaces[J]. Experimental Thermal and Fluid Science, 2002, 25(7): 503-510.
    [31] CHEN B, ZHANG Y H, DAI Z F, et al. Experimental research on the dynamics of a train of droplets impacting, from droplets to liquid film, continuity and inheritance[J]. Energy, 2022, 256: 124670.
    [32] 章振宇, 张宸玮, 张鹏. 小韦伯数下液滴撞击光滑壁面的数值模拟[J]. 工程热物理学报, 2021, 42(12): 3296-3303.

    ZHANG Zhenyu, ZHANG Chenwei, ZHANG Peng. Numerical simulation of droplet impacting on free slip wall under small Weber number[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3296-3303. (in Chinese)
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  81
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2024-06-20
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回