留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢影响下纳米晶体晶界滑移和晶界三叉点裂纹形核模型

赵可可 朱云蝶 张吉鼎 江晓禹

赵可可, 朱云蝶, 张吉鼎, 江晓禹. 氢影响下纳米晶体晶界滑移和晶界三叉点裂纹形核模型[J]. 应用数学和力学, 2024, 45(7): 875-885. doi: 10.21656/1000-0887.440257
引用本文: 赵可可, 朱云蝶, 张吉鼎, 江晓禹. 氢影响下纳米晶体晶界滑移和晶界三叉点裂纹形核模型[J]. 应用数学和力学, 2024, 45(7): 875-885. doi: 10.21656/1000-0887.440257
ZHAO Keke, ZHU Yundie, ZHANG Jiding, JIANG Xiaoyu. Grain Boundary Slip and a Grain Boundary Triple Junction Crack Nucleation Model for Nanocrystals Under the Influence of Hydrogen[J]. Applied Mathematics and Mechanics, 2024, 45(7): 875-885. doi: 10.21656/1000-0887.440257
Citation: ZHAO Keke, ZHU Yundie, ZHANG Jiding, JIANG Xiaoyu. Grain Boundary Slip and a Grain Boundary Triple Junction Crack Nucleation Model for Nanocrystals Under the Influence of Hydrogen[J]. Applied Mathematics and Mechanics, 2024, 45(7): 875-885. doi: 10.21656/1000-0887.440257

氢影响下纳米晶体晶界滑移和晶界三叉点裂纹形核模型

doi: 10.21656/1000-0887.440257
基金项目: 

国家自然科学基金 11472230

详细信息
    作者简介:

    赵可可(1996—),男,硕士(E-mail: zkk4255@163.com)

    通讯作者:

    江晓禹(1965—),男,教授,博士,博士生导师(通讯作者. E-mail: xiaoyujiang8@sina.com)

  • 中图分类号: O346

Grain Boundary Slip and a Grain Boundary Triple Junction Crack Nucleation Model for Nanocrystals Under the Influence of Hydrogen

  • 摘要: 在远场均匀拉伸载荷下,裂纹尖端会产生应力集中,与裂纹尖端相邻的晶界会承受较大的切应力,此切应力会导致晶界滑移. 该文研究了氢和纳米晶界滑移对晶界裂纹形核、临界应力强度因子以及屏蔽效应的影响. 应用连续分布位错方法给出了模型的理论解. 结果表明:由于位错在晶界三叉点和滑移带尖端处的塞积,楔形裂纹会优先沿着晶界三叉点DC方向和晶界BD向上萌生,而且氢会使得裂纹萌生的总能量降低,氢浓度每增加1%,萌生最稳定裂纹的总能量大约降低1.86%. 虽然晶界滑移会使得裂纹尖端的临界应力强度因子和屏蔽效应增大, 但是氢使得临界应力强度因子降低. 最后根据弱键理论,研究了氢对表面能的影响,氢浓度每增加1%,表面能降低5%. 这一理论工作提供了氢和晶界滑移对材料微观断裂力学的新信息,有助于解释金属断裂的微观机理.
  • 图  1  主裂纹尖端位错发射与晶界滑移导致纳米裂纹萌生的过程示意图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Schematic diagram of the initiation process of a nanocrack caused by dislocation emission and grain boundary slip at the main crack tip

    图  2  位错数目随角度β和外加应力的变化

    Figure  2.  The numbers of dislocations varying with angle β and the applied stress

    图  3  裂纹尖端屏蔽效应和位错发射数目随外加载荷的变化关系

    Figure  3.  Relationships between the emission numbers of crack tip dislocations and shielding effects with applied loads

    图  4  沿不同晶界的裂纹萌生总能量和氢对裂纹萌生总能量的影响

    Figure  4.  The total energy of crack initiation along different grain boundaries and the effects of hydrogen on the total energy of crack initiation

    图  5  不同位置处裂纹萌生的总能量和氢对裂纹萌生总能量的影响

    Figure  5.  The total energy of crack initiation at different locations and the effects of hydrogen on the total energy of crack initiation

    图  6  临界应力强度因子随外加载荷的变化

    Figure  6.  Changes of the critical stress intensity factor with the applied load

  • [1] WANG L, ZHOU J, ZHANG S, et al. Effects of accommodated grain boundary sliding on triple junction nanovoid nucleation in nanocrystalline materials[J]. Mechanics of Materials, 2014, 71 (4): 10-20.
    [2] FENG H, FANG Q H, ZHANG L C, et al. Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials[J]. International Journal of Plasticity, 2013, 42 (4): 50-64.
    [3] MEIROM R A, CLARK T E, MUHLSTEIN C L. The role of specimen thickness in the fracture toughness and fatigue crack growth resistance of nanocrystalline platinum films[J]. Acta Materialia, 2012, 60 (3): 1408-1417. doi: 10.1016/j.actamat.2011.11.015
    [4] OVID'KO I A, SHEINERMAN A G, AIFANTIS E C. Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids[J]. Acta Materialia, 2011, 59 (12): 5023-5031. doi: 10.1016/j.actamat.2011.04.056
    [5] JIANG D E, CARTER E A. First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals[J]. Acta Materialia, 2004, 52 (16): 4801-4807. doi: 10.1016/j.actamat.2004.06.037
    [6] BARNOUSH A, ASGARI M, JOHNSEN R. Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation[J]. Scripta Materialia, 2012, 66 (6): 414-417. doi: 10.1016/j.scriptamat.2011.12.004
    [7] OVID'KO I A. Review on the fracture processes in nanocrystalline materials[J]. Journal of Materials Science, 2007, 42 (5): 1694-1708. doi: 10.1007/s10853-006-0968-9
    [8] HILLS D A, KELLY P A, DAI D N, et al. Solution of Crack Problems: the Distributed Dislocation Technique[M]. Netherlands: Kluwer Academic Publishers, 2013.
    [9] 孙奇, 吴金波, 江晓禹. 次表面分岔裂纹的力学行为[J]. 应用数学和力学, 2023, 44 (12): 1453-1462. doi: 10.21656/1000-0887.440056

    SUN Qi, WU Jinbo, JIANG Xiaoyu. Mechanical behavior of subsurface branched cracks[J]. Applied Mathematics and Mechanics, 2023, 44 (12): 1453-1462. (in Chinese) doi: 10.21656/1000-0887.440056
    [10] 邢帅兵, 王强胜, 生月, 等. 圆形杂质对裂纹扩展的影响[J]. 应用数学和力学, 2019, 40 (2): 189-199. doi: 10.21656/1000-0887.390136

    XING Shuaibing, WANG Qiangsheng, SHENG Yue, et al. Effects of circular inhomogeneity on crack propagation[J]. Applied Mathematics and Mechanics, 2019, 40 (2): 189-199. (in Chinese) doi: 10.21656/1000-0887.390136
    [11] LI X, JIANG X, LI X, et al. Solution of an inclined crack in a finite plane and a new criterion to predict fatigue crack propagation[J]. International Journal of Mechanical Sciences, 2016, 119 : 217-223. doi: 10.1016/j.ijmecsci.2016.10.019
    [12] ZHANG J, SHENG Y, YANG H, et al. Crystal crack dislocation model and microcrack nucleation criterion in the hydrogen environment[J]. European Journal of Mechanics A: Solids, 2023, 98 : 104899. doi: 10.1016/j.euromechsol.2022.104899
    [13] ZHOU G H, ZHOU F X, WAN F R, et al. Molecular dynamics simulation of hydrogen enhancing dislocation emission[J]. Science in China Series E: Technological Sciences, 1998, 145/149 : 123-128.
    [14] CHEREPANOV G P. Mechanics of brittle fracture[J]. Journal of Applied Mechanics, 1982, 49 (4): 932.
    [15] WANG F, WANG C. First-principles investigation of hydrogen embrittlement in polycrystalline Ni3Al[J]. Physical Review B, 1998, 57 (1): 289-295. doi: 10.1103/PhysRevB.57.289
    [16] OVID'KO I A, SHEINERMAN A G, AIFANTIS E C. Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals[J]. Acta Materialia, 2008, 56 (12): 2718-2727. doi: 10.1016/j.actamat.2008.02.004
    [17] LI X J X. Revealing the inhibition mechanism of grain size gradient on crack growth in gradient nano-grained materials[J]. International Journal of Solids and Structures, 2019, 172/173 : 1-9. doi: 10.1016/j.ijsolstr.2019.05.023
    [18] SABNIS P A, MAZIERE M, FOREST S, et al. Effect of secondary orientation on notch-tip plasticity in superalloy single crystals[J]. International Journal of Plasticity, 2012, 28 (1): 102-123.
    [19] LI X, SHEINERMAN A G, YANG H, et al. Theoretical modeling of toughening mechanisms in the CrMnFeCoNi high-entropy alloy at room temperature[J]. International Journal of Plasticity, 2022, 154 : 103304.
    [20] ZHANG F, LIU Y, ZHOU J. The crack nucleation in hierarchically nanotwinned metals[J]. Engineering Fracture Mechanics, 2018, 201 : 29-35.
    [21] WU M S, ZHOU H. An energy analysis of triple junction crack nucleation due to the wedging action of grain boundary dislocations[J]. International Journal of Fracture, 1996, 78 (2): 165-191.
    [22] GIBSON M A, SCHUH C A. Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys[J]. Acta Materialia, 2015, 95 : 145-155.
    [23] NUISMER R J. An energy release rate criterion for mixed mode fracture[J]. International journal of fracture, 1975, 11 (2): 245-250.
    [24] SHIMOKAWA T, TANAKA M, KINOSHITA K, et al. Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals[J]. Physical Review B, 2011, 83 (21): 214113.
  • 加载中
图(6)
计量
  • 文章访问数:  567
  • HTML全文浏览量:  56
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2024-02-01
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回