留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征值分析的多尺度结构优化设计方法

孙国民 张效忠 孙延华

孙国民, 张效忠, 孙延华. 基于特征值分析的多尺度结构优化设计方法[J]. 应用数学和力学, 2019, 40(6): 630-640. doi: 10.21656/1000-0887.390207
引用本文: 孙国民, 张效忠, 孙延华. 基于特征值分析的多尺度结构优化设计方法[J]. 应用数学和力学, 2019, 40(6): 630-640. doi: 10.21656/1000-0887.390207
SUN Guomin, ZHANG Xiaozhong, SUN Yanhua. Multi-Scale Structure Optimization Design Based on Eigenvalue Analysis[J]. Applied Mathematics and Mechanics, 2019, 40(6): 630-640. doi: 10.21656/1000-0887.390207
Citation: SUN Guomin, ZHANG Xiaozhong, SUN Yanhua. Multi-Scale Structure Optimization Design Based on Eigenvalue Analysis[J]. Applied Mathematics and Mechanics, 2019, 40(6): 630-640. doi: 10.21656/1000-0887.390207

基于特征值分析的多尺度结构优化设计方法

doi: 10.21656/1000-0887.390207
基金项目: 贵州省教育厅自然科学研究青年项目(黔教合KY字[2015]466);贵州省科技计划项目(黔科合基础[2017]1062)
详细信息
    作者简介:

    孙国民(1985—),男,讲师,硕士(通讯作者. E-mail: sunguomin815@163.com).

  • 中图分类号: O343.7

Multi-Scale Structure Optimization Design Based on Eigenvalue Analysis

  • 摘要: 基于特征值分析,提出了多尺度结构优化设计方法.该方法被用于分析宏观结构上作用有最不利荷载时,使宏观结构刚度最大的宏观拓扑结构和微观材料分布.引入约束条件为最不利荷载的Euclid范数等于1,根据Rayleigh-Ritz定理,可以将结构的柔顺度转换为一个与局部荷载向量维数相同的对称矩阵,这样就将作用有最不利荷载的柔顺度最小问题转换为求解对称矩阵的最大特征值最小问题,同时最不利荷载可以通过最大特征值矩阵的特征向量求得.最后通过算例验证所提多尺度结构优化设计方法的有效性,并说明宏观拓扑结构和微观材料分布的合理性.所提出的多尺度优化方法具有迭代稳定、收敛迅速等特点.该文拓扑优化中密度函数的更新是基于灵敏度分析和移动渐近线方法(method of moving asymptotes,MMA).
  • [1] SANCHEZ-PALENCIA E. Non-Homogeneous Media and Vibration Theory [M]. Berlin: Springer-Verlag, 1980.
    [2] BENSSOUSAN A, LIONS J L, PAPANICOULAU G. Asymptotic Analysis for Periodic Structures [M]. Amesterdam: North Holland Publishing Company, 1978.
    [3] CIORANESCU D, PAULIN J S J. Homogenization in open sets with holes[J]. Journal of Mathematical Analysis and Applications,1979,71(2): 590-607.
    [4] BENDSE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering,1988,71(2): 197-224.
    [5] SIGMUND O. Materials with prescribed constitutive parameters: an inverse homogenization problem[J]. Journals & Books Create Account Sign in International Journal of Solids and Structures,1994,31(17): 2313-2329.
    [6] RODRIGUES H, GUEDES J M, BENDSOE M P. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization,2002,24(1): 1-10.
    [7] 阎军. 超轻金属结构与材料性能多尺度分析与协同优化设计[D]. 博士学位论文. 大连: 大连理工大学, 2007.(YAN Jun. Multiscale analysis and concurrent optimization fo ultra-light metal structures and materials[D]. PhD Thesis. Dalian: Dalian University of Technology, 2007.(in Chinese))
    [8] LIU L, YAN J, CHENG G D. Optimum structure with homogeneous optimum truss-like material[J]. Computers and Structures,2008,86(13/14): 1417-1425.
    [9] COELHO P G, FERNANDES P R, GUEDES J M, et al. A hierarchical model for concurrent material and topology optimisation of three-dimensional structures[J]. Structural and Multidisciplinary Optimization,2008,35(2): 107-115.
    [10] TAKEZAWA A, NII S, KITAMURA M, et al. Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system[J]. Computer Methods in Applied Mechanics and Engineering,2011,200(25/28): 2268-2281.
    [11] GUO X, ZHAO X F, ZHANG W S, et al. Multi-scale robust design and optimization considering load uncertainties[J]. Computer Methods in Applied Mechanics and Engineering,2015,〖STHZ〗 283: 994-1009.
    [12] ZHANG W S, ZHONG W L, GUO X. An explicit length scale control approach in SIMP-based topology optimization[J]. Computer Methods in Applied Mechanics and Engineering,2014,282: 71-86.
    [13] 阎军, 邓佳东, 程耿东. 基于柔顺性与热变形双目标的多孔材料与结构几何多尺度优化设计[J]. 固体力学学报, 2011,32(2): 119-132.(YAN Jun, DENG Jiadong, CHENG Gengdong. Multi geometrical scale optimization for porous structure and material with multi-objective of structural compliance and thermal deformation[J]. Acta Mechanica Solida Sinica,2011,32(2): 119-132.(in Chiniese))
    [14] YAN J, DUAN Z Y, ERIK L, et al. Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model[J]. Acta Mechanica Sinica,2016,32(3): 430-441.
  • 加载中
计量
  • 文章访问数:  1703
  • HTML全文浏览量:  300
  • PDF下载量:  919
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-24
  • 修回日期:  2019-04-18
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回