留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均匀自由流动的非牛顿流体中连续表面上的磁流体动力学流动和热传递

B·萨胡 H·G·沙尔马

B·萨胡, H·G·沙尔马. 均匀自由流动的非牛顿流体中连续表面上的磁流体动力学流动和热传递[J]. 应用数学和力学, 2007, 28(11): 1307-1317.
引用本文: B·萨胡, H·G·沙尔马. 均匀自由流动的非牛顿流体中连续表面上的磁流体动力学流动和热传递[J]. 应用数学和力学, 2007, 28(11): 1307-1317.
Bikash Sahoo, H. G. Sharma. MHD Flow and Heat Transfer From a Continuous Surface in a Uniform Free Stream of a Non-Newtonian Fluid[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1307-1317.
Citation: Bikash Sahoo, H. G. Sharma. MHD Flow and Heat Transfer From a Continuous Surface in a Uniform Free Stream of a Non-Newtonian Fluid[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1307-1317.

均匀自由流动的非牛顿流体中连续表面上的磁流体动力学流动和热传递

基金项目: 印度政府人力资源发展部提供的基金
详细信息
  • 中图分类号: O373;O361.3

MHD Flow and Heat Transfer From a Continuous Surface in a Uniform Free Stream of a Non-Newtonian Fluid

  • 摘要: 分析在平行自由流动的非牛顿黏弹性导电流体中,连续平展表面移动时的稳态流和热传递特性,该流动处于横向均匀磁场作用下.以二阶流体构建它的本构方程,得到了速度分布和温度断面图的数值结果.讨论了诸如黏弹性参数、磁场参数和Prandtl数等不同物理参数对诸种动量和热传递特性的影响,并给出相关图示.
  • [1] Papanastasiou T C, Georgiou G C, Alexandrou A N.Viscous Fluid Flow[M].Boca Raton:CRC Press, 2000.
    [2] Sakiadis B C. Boundary-layer behavior on continuous solid surfaces—I boundary layer equations for two dimensional and axisymmetric flow[J].American Institute of Chemical Engineers Journal,1961,7:26-28. doi: 10.1002/aic.690070108
    [3] Sakiadis B C. Boundary layer behavior on continuous solid surface: the boundary layer on a continuous flat surface[J].American Institute of Chemical Engineers Journal,1961,7:221-224. doi: 10.1002/aic.690070211
    [4] Crane L J. Flow past a stretching sheet[J].Journal of Applied Mathematics and Physics, ZAMP,1970,21:645-647. doi: 10.1007/BF01587695
    [5] Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J].Canadian Journal Chemical Engineering,1977,55:744-746. doi: 10.1002/cjce.5450550619
    [6] Rivlin R S, Ericksen J L.Stress deformation relations for isotropic materials[J].Journal of Rational Mechanics and Analysis,1955,4:323-425.
    [7] Dunn J E, Fosdick R L. Thermodynamics, stability and boundedness of Fluids of complexity 2 and fluids of second grade[J].Archive for Rational Mechanics and Analysis,1974,56:191-252. doi: 10.1007/BF00280970
    [8] Dunn J E, Rajagopal K R. Fluids of differential type, critical review and thermodynamic analysis[J].International Journal of Engineering Science,1995,33:689-729. doi: 10.1016/0020-7225(94)00078-X
    [9] Fosdick R L, Rajagopal K R. Anomalous feature in the model of “second order fluids”[J].Archive for Rational Mechanics and Analysis,1979,70:145-152.
    [10] Galdi G P, Padula M, Rajagopal K R. On the conditional stability of the rest state of a fluid of second grade in unbounded domains[J].Archive for Rational Mechanics and Analysis,1990,109:173-182. doi: 10.1007/BF00405241
    [11] Fox V G, Ericksen L E, Fan L T. The laminar boundary layer on a moving continuous flat sheet immersed in a non-Newtonian fluid[J].American Institute of Chemical Engineers Journal,1969,15:327-333. doi: 10.1002/aic.690150307
    [12] Rajagopal K R, Na T Y, Gupta A S. Flow of a viscoelastic fluid over a stretching sheet[J].Rheological Acta,1984,24:213-215.
    [13] Troy W C, Overman E A, Ermentrout H G B,et al. Uniqueness of flow of a second-order fluid past a stretching sheet[J].Quarterly Journal of Applied Mathematics,1987,44:753-755.
    [14] Sadeghy K, Sharifi M. Local similarity solution for the flow of a “second-grade” viscoelastic fluid above a moving plate[J].International Journal Non-Linear Mechanics,2004,39:1265-1273. doi: 10.1016/j.ijnonlinmec.2003.08.005
    [15] Sadeghy K, Najafi A H, Saffaripour M. Sakiadis flow of an upper convected Maxwell fluid[J].International Journal Non-Linear Mechanics,2005,40:1220-1228. doi: 10.1016/j.ijnonlinmec.2005.05.006
    [16] Hassanien I A. Flow and heat transfer from a continuous surface in a parallel free stream of viscoelastic second-order fluid[J].Applied Scientific Research,1992,49:335-344. doi: 10.1007/BF00419979
    [17] Hady F M, Gorla R S R. Heat transfer from a continuous surface in a parallel free stream of viscoelastic fluid[J].Acta Mechanica,1998,128:201-208. doi: 10.1007/BF01251890
    [18] Bhatnagar R K, Gupta G, Rajagopal K R. Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity[J].International Journal Non-Linear Mechanics,1995,30:391-405. doi: 10.1016/0020-7462(94)00027-8
    [19] Allan F M. Similarity solutions of a boundary layer problem over moving surfaces[J].Applied Mathematics Letter,1997,10:81-85. doi: 10.1016/S0893-9659(97)00015-3
    [20] Kumari M, Nath G. MHD boundary-layer flow of a non-Newtonian fluid over a continuously moving surface with a parallel free stream[J].Acta Mechanica,2001,146:139-150. doi: 10.1007/BF01246729
    [21] Abo-Eldahab E M, Salem A M. MHD free-convection flow of a non-Newtonian power-law fluid at a stretching surface with a uniform free-stream[J].Applied Mathematics and Computation,2005,169:806-818. doi: 10.1016/j.amc.2004.09.089
    [22] Rajeshwari G K, Rathna S L. Flow of a particular class of non-Newtonian visco-elastic fluid near a stagnation point[J].Journal of Applied Mathematics and Physics, ZAMP,1962,13:43-57. doi: 10.1007/BF01600756
    [23] Beard D W, Walters K. Elastico-viscous boundary layer flows—Ⅰ two-dimensional flow near a stagnation point[J].Proceedings Cambridge Philosophical Society, 1964,60:667-674. doi: 10.1017/S0305004100038147
    [24] Mishra S P, Mohapatra U. Elasticoviscous flow between a rotating and a stationary disk with uniform suction at the stationary disk[J].Journal of Applied Physics,1977,48:1515-1521. doi: 10.1063/1.323871
    [25] Shrestha G M. Laminar elastico-viscous flow through channels with porous walls with different permeability[J].Applied Science Research,1969,20:289-305. doi: 10.1007/BF00382401
    [26] Garg V K, Rajagopal K R. Stagnation point flow of a non-Newtonian fluid[J].Mechanics Research Communication,1990,17:415-421. doi: 10.1016/0093-6413(90)90059-L
    [27] Garg V K, Rajagopal K R. Flow of a non-Newtonian fluid past a wedge[J].Acta Mechanica,1991,88:113-123. doi: 10.1007/BF01170596
    [28] Davies M H. A note on elastico-viscous boundary layer flows[J].Journal of Applied Mathematics and Physics, ZAMP,1960,17:189-191.
    [29] Chiang K T. Dealing with complicated starting value in shooting process with Broyden's mehtod: Examples of the onset of convection for the viscoelastic fluid[J].International Communication in Heat and Mass Transfer,2004,31:815-826. doi: 10.1016/S0735-1933(04)00068-5
    [30] Teipel I. Die R?aumliche staupunktstr?omung f?ur ein viscoelastisches fluid[J].Rheological Acta,1986,25:75-79. doi: 10.1007/BF01332126
    [31] Ariel P.D. A Hybrid method for computing the flow of viscoelastic fluids[J].International Journal for Numerical Methods in Fluids,1992,14:757-774. doi: 10.1002/fld.1650140702
    [32] Labropulu F, Xu X, Chinichian M. Unsteady stagnation point flow of a non-Newtonian second grade fluid[J].International Journal of Mathematics and Mathematical Sciences,2003,60:3797-3807.
    [33] Labropulu F, Husain I, Chinichian M. Stagnation point flow of the Walters' B fluid with slip[J].International Journal of Mathematics and Mathematical Sciences,2004,61:3249-3258.
  • 加载中
计量
  • 文章访问数:  2970
  • HTML全文浏览量:  147
  • PDF下载量:  872
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-08
  • 修回日期:  2007-06-07
  • 刊出日期:  2007-11-15

目录

    /

    返回文章
    返回