留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性圆柱壳计及切变形和转动惯量时的动力学稳定性

B·Kh·艾什马托夫

B·Kh·艾什马托夫. 黏弹性圆柱壳计及切变形和转动惯量时的动力学稳定性[J]. 应用数学和力学, 2007, 28(10): 1175-1184.
引用本文: B·Kh·艾什马托夫. 黏弹性圆柱壳计及切变形和转动惯量时的动力学稳定性[J]. 应用数学和力学, 2007, 28(10): 1175-1184.
B. Kh. Eshmatov. Dynamic Stability of Viscoelastic Circular Cylindrical Shells Taking Into Account Shear Deformation and Rotatory Inertia[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1175-1184.
Citation: B. Kh. Eshmatov. Dynamic Stability of Viscoelastic Circular Cylindrical Shells Taking Into Account Shear Deformation and Rotatory Inertia[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1175-1184.

黏弹性圆柱壳计及切变形和转动惯量时的动力学稳定性

详细信息
    作者简介:

    B·Kh·艾什马托夫,副教授,博士(联系人.Tel:+998-712-635016;E-mail:ebkh@mail.ru).

  • 中图分类号: O347.2

Dynamic Stability of Viscoelastic Circular Cylindrical Shells Taking Into Account Shear Deformation and Rotatory Inertia

  • 摘要: 根据修正的Timoshenko理论,在几何非线性中考虑了剪切变形和转动惯量,对黏弹性圆柱壳的动力稳定性进行了研究.根据Bubnov-Galerkin法,结合基于求积公式的数值方法,将问题简化为求解具有松弛奇异核的非线性积分-微分方程的问题.针对物理-力学和几何参数在大范围内的变化,研究壳体的动力特性,显示了材料的黏弹性对圆柱壳动力稳定性的影响.最后,比较了通过不同的理论得到的结果.
  • [1] Volmir A S.The Nonlinear Dynamics of Plates and Shells[M].Moscow:Nauka, 1972.
    [2] Timoshenko S P.Vibration Problems in Engineering[M].New York: Van Nostrand,1958.
    [3] Uflyand Ya S. Distribution of waves at transverse vibrations of cores and plates[J].Journal of Soviet Applied Mathematics and Mechanics[Translated from Prikladnaya Matemetika i Mekhanika]. ,1948,12(3):287-300.
    [4] Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates[J].Journal of Applied Mechanics,1951,19(1):31-8.
    [5] Reissner E. The effect of transverse shear deformation on the bending of elastic plates[J].Journal of Applied Mechanics,1945,12:A69-88.
    [6] Ambartsumyan S A.General Theory of Anisotropic Shells[M].Moscow:Nauka,1974.(in Russian)
    [7] Rzhanitsyn A R.Theory of Creep[M].Moscow:Stroyizdat,1968.(in Russian)
    [8] Il'yushin A A, Pobedrya B E.Fundamentals of the Mathematical Theory of Thermoviscoelasticity[M].Moscow:Nauka,1970.(in Russian)
    [9] Rabotnov Yu N.Elements of the Hereditary Mechanics of Solids[M].Moscow: Nauka, 1977.(in Russian)
    [10] Shirakawa K.Effects of shear deformation and rotatory inertia on vibration and buckling of cylindrical shells[J].Journal of Sound and Vibration,1983,91(3):425-37. doi: 10.1016/0022-460X(83)90289-4
    [11] Bogdanovich A E.Nonlinear Dynamic Problems for Composite Cylindrical Shells[M].New York: Elsevier Science Publishers Ltd,1993.
    [12] Awrejcewicz J, Krys’ko V A.Nonclassical Thermoelastic Problems in Nonlinear Dynamics of Shells.Applications of the Bubnov-Galerkin and Finite Difference Numerical Methods[M].Berlin: Springer-Verlag, 2003.
    [13] Okazaki A, Tatemichi A. Damping properties of two-layered cylindrical shells with an unconstrained viscoelastic layer[J].Journal of Sound and Vibration,1994,176(2):145-61. doi: 10.1006/jsvi.1994.1365
    [14] 程昌钧,张能辉.轴压作用下粘弹性柱壳的动力学行为[J].应用数学和力学,2001,22(1):1-8.
    [15] Kozlov V I,Karnaukhova T V.Basic equations for viscoelastic laminated shells with distributed piezoelectric inclusions intended to control nonstationary vibrations[J].Journal of International Applied Mechanics,2002,38(10):1253-60. doi: 10.1023/A:1022266614651
    [16] Koltunov M A.Creep and Relaxation[M].Moscow: Visshaya shkola,1976.(in Russian)
    [17] Potapov V D.Stability of Stochastic Elastic and Viscoelastic Systems[M].Chichester (England): Wiley, 1999.
    [18] Badalov F B, Eshmatov Kh, Yusupov M. About some methods of the decision of systems integro-differential equations meeting in problems viscoelasticity[J].Journal of Soviet Applied Mathematics and Mechanics[Translated from Prikladnaya Matemetika i Mekhanika]. ,1987,51:867-71.
    [19] Badalov F B,Eshmatov Kh.The brief review and comparison of integrated methods of mathematical modeling in problems of hereditary mechanics of rigid bodies[J].International Journal of Electronic Modeling,1989,11(2):81-90.
    [20] Badalov F B,Eshmatov Kh. To research of nonlinear vibrations of viscoelastic plates with initial imperfections[J].Journal of Soviet Applied Mechanics[Translated from Prikladnaya Mekhanika]. ,1990,28(8):99-105.
    [21] Badalov F B, Eshmatov Kh, Akbarov U I. Stability of a viscoelastic plate under dynamic loading[J].Journal of Soviet Applied Mechanics[Translated from Prikladnaya Mekhanika]. ,1991,27(9):892-99.
    [22] Verlan A F, Eshmatov B Kh. Mathematical simulation of oscillations of orthotropic viscoelastic plates with regards to geometric nonlinearity[J].International Journal of Electronic Modeling,2005,27(4):3-17.
    [23] Eshmatov B Kh.Dynamic stability of viscoelastic plates at growing compressing loadings[J].Journal of Applied Mechanics and Technical Physics,2006,47(2):165-75.
    [24] Eshmatov B Kh.Nonlinear vibration analysis of viscoelastic plates based on a refined Timoshenko theory[J].International Applied Mechanics,2006,42(5):596-605. doi: 10.1007/s10778-006-0127-7
    [25] Eshmatov B Kh. Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates[J].Journal of Sound and Vibration,2007,300:709-26. doi: 10.1016/j.jsv.2006.08.024
    [26] Eshmatov B Kh. Nonlinear vibrations of viscoelasftic cylindrical shells taking into account shear deformation and rotatory inertia[J].International Journal of Nonlinear Dynamics,2007.
    [27] Eshmatov B Kh, Khodjaev D A. Nonlinear vibrations and dynamical stability of viscoelastic cylindrical panel with concentrated masses[J].International Journal of Acta Mechanica,2007,190(1/4):165-183. doi: 10.1007/s00707-006-0418-4
    [28] Eshmatov B Kh. Nonlinear vibrations of viscoelastic orthotropic cylindrical shells in view of propagation of elastic waves[J].Materials of XVII Session of the International School on Models of Mechanics of the Continuous Environment,July,4-10,Kazan,2004,186-91.(in Russian)
    [29] Eshmatov B Kh. Nonlinear vibrations of viscoelastic orthotropic plates from composite materials[A].Third M I T.Conference on Computational Fluid and Solid Mechanics[C].June 14-17,Boston:the Massachasetle Institue of Technology (USA),2005.
  • 加载中
计量
  • 文章访问数:  3122
  • HTML全文浏览量:  157
  • PDF下载量:  695
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-02-15
  • 修回日期:  2007-06-26
  • 刊出日期:  2007-10-15

目录

    /

    返回文章
    返回