留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中悬浮隧道的空间曲线结构运动方程

董满生 葛斐 张双寅 洪友士

董满生, 葛斐, 张双寅, 洪友士. 水中悬浮隧道的空间曲线结构运动方程[J]. 应用数学和力学, 2007, 28(10): 1157-1165.
引用本文: 董满生, 葛斐, 张双寅, 洪友士. 水中悬浮隧道的空间曲线结构运动方程[J]. 应用数学和力学, 2007, 28(10): 1157-1165.
DONG Man-sheng, GE Fei, ZHANG Shuang-yin, HONG You-shi. Dynamic Equations of Curved Submerged Floating Tunnel[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1157-1165.
Citation: DONG Man-sheng, GE Fei, ZHANG Shuang-yin, HONG You-shi. Dynamic Equations of Curved Submerged Floating Tunnel[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1157-1165.

水中悬浮隧道的空间曲线结构运动方程

基金项目: 国家自然科学基金(重点)资助项目(10532070)
详细信息
    作者简介:

    董满生(1973- ),男,安徽人,博士(E-mail:dongmans@lnm.unech.ac.cn);洪友士(1951- ),男,福建人,研究员,博士(联系人.Tel:+86-10-62613730;E-mail:hongys@imech.ac.cn)

  • 中图分类号: U459.9;TB122

Dynamic Equations of Curved Submerged Floating Tunnel

  • 摘要: 借助参考直线坐标系,求解空间曲线结构在曲线坐标系中的几何方程.运用Hamilton原理推导空间螺旋曲线梁结构的运动方程.方程表明空间曲线结构4个自由度相互耦合,当结构退化为平面曲线结构时,两个相互垂直平面内的各自由度相互耦合.空间任意曲线梁结构的动力方程均可按照该文推导思路得出.对于水中悬浮隧道结构,可以忽略转动动能对振动的影响.
  • [1] 董满生,葛斐,洪友士. 曲线形水中悬浮隧道的温度内力研究[J].工程力学,2006,23(S1):21-24.
    [2] 葛斐,董满生,惠磊,等.水中悬浮隧道锚索在波流场中的涡激动力响应[J].工程力学,2006,23(S1):217-221.
    [3] Tveit P. Ideals on downward arched and other underwater concrete tunnels[J].Tunneling and Underground Space Tech,2000,15(1):69-78. doi: 10.1016/S0886-7798(00)00031-6
    [4] Brancaleoni F, Castellani A, D’Asdia P. The response of submerged tunnels to their environment[J].Eng Struct,1989,11(1):47-56. doi: 10.1016/0141-0296(89)90032-1
    [5] Remseth S, Leira B J, Okstad K M,et al.Dynamic response and fluid/structure interaction of submerged floating tunnels[J].Computers and Structures,1999,72(4):659-685. doi: 10.1016/S0045-7949(98)00329-0
    [6] Fogazzi P, Perotti F.Dynamic response of seabed anchored floating tunnels under seismic excitation[J].Earthquake Engineering and Structural Dynamics,2000,29(3):273-295. doi: 10.1002/(SICI)1096-9845(200003)29:3<273::AID-EQE899>3.0.CO;2-Z
    [7] Chai H Y,Jon P Fehrenbach. Natural frequency of curved girder[J].Journal of the Engineering Mechanics Division, ASCE,1981,107(4):339-354.
    [8] Schelling D R, Galdos N H,Sahin M A. Evaluation of impact factors for horizontally curved steel box bridges[J].Journal of Structural Engineering, ASCE,1992,118(11):3203-3221. doi: 10.1061/(ASCE)0733-9445(1992)118:11(3203)
    [9] Galdos N H, Schelling D R, Sahin M A. Methodology for impact factor for horizontally curved steel box bridge[J].Journal of Structural Engineering, ASCE,1993,119(6):1917-1934. doi: 10.1061/(ASCE)0733-9445(1993)119:6(1917)
    [10] Snyder J M, Wilson J F. Free vibrations of continuous horizontally curved beams[J].Journal of Sound and Vibration,1992,157(2):345-355. doi: 10.1016/0022-460X(92)90686-R
    [11] Fam A R M, Turkstra C.Model study of horizontally curved box girder[J].Journal of the Structural Division, ASCE,1976,102(5):1097-1108.
    [12] Muppidi N R. Lateral vibrations of plane curved bars[J].Journal of the Structural Division, ASCE,1968,94(10):2197-2212.
    [13] 叶敏,肖龙翔.分析力学[M].天津:天津大学出版社, 2001.
  • 加载中
计量
  • 文章访问数:  3033
  • HTML全文浏览量:  159
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-01-17
  • 修回日期:  2007-08-05
  • 刊出日期:  2007-10-15

目录

    /

    返回文章
    返回