留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为

孟新柱 陈兰荪 宋治涛

孟新柱, 陈兰荪, 宋治涛. 一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J]. 应用数学和力学, 2007, 28(9): 1123-1134.
引用本文: 孟新柱, 陈兰荪, 宋治涛. 一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J]. 应用数学和力学, 2007, 28(9): 1123-1134.
MENG Xin-zhu, CHEN Lan-sun, SONG Zhi-tao. Global Dynamics Behaviors for a New Delay SEIR Epidemic Disease Model With Vertical Transmission and Pulse Vaccination[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1123-1134.
Citation: MENG Xin-zhu, CHEN Lan-sun, SONG Zhi-tao. Global Dynamics Behaviors for a New Delay SEIR Epidemic Disease Model With Vertical Transmission and Pulse Vaccination[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1123-1134.

一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为

基金项目: 国家自然科学基金资助项目(10471117)
详细信息
    作者简介:

    孟新柱(1972- ),男,山东定陶人,博士,副教授,从事生物数学研究(联系人.E-mail:mxz721106@sdust.edu.cn).

  • 中图分类号: O175

Global Dynamics Behaviors for a New Delay SEIR Epidemic Disease Model With Vertical Transmission and Pulse Vaccination

  • 摘要: 对一个带有有害时滞与垂直传染的SEIR传染病模型,在脉冲免疫接种条件下,分析了其动力学行为.运用离散动力系统的频闪映射,获得了一个‘无病’周期解,证明了当模型的一些参数在适当的条件下,该‘无病’周期解是全局吸引的.运用脉冲时滞泛函微分方程理论,获得了含有时滞的持久性的充分条件,并且证明了时滞、脉冲免疫与垂直传染对模型的动力学行为能够产生显著的影响.结论表明该时滞是“有害”时滞.
  • [1] Michael Y Li,Gaef John R,WANG Lian-cheng,et al.Global dynamics of an SEIR model with varying total population size[J].Mathematical Biosciences,1999,160(2):191-213. doi: 10.1016/S0025-5564(99)00030-9
    [2] Michael Y Li,Hall Smith,Wang Lian-cheng.Global dynamics of an SEIR epidemic model with vertical transmission[J].SIAM Journal on Applied Mathematics,2001,62(1):58-69. doi: 10.1137/S0036139999359860
    [3] Al-Showaikh F N M,Twizell E H.One-dimensional measles dynamics[J].Applied Mathematics and Computation,2004,152(1):169-194. doi: 10.1016/S0096-3003(03)00554-X
    [4] Greenhalgh D.Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J].Mathematical and Computer Modelling,1997,25(5):85-107.
    [5] LI Gui-hua,JIN Zhen.Global stability of an SEIR epidemic model with infectious force in latent,infected and immune period[J].Chaos, Solitons and Fractals,2005,25(5):1177-1184. doi: 10.1016/j.chaos.2004.11.062
    [6] Hethcote H W,Stech H W,Van den Driessche P.Periodicity and stability in epidemic models: A survey[A].In:Differential Equations and Applications in Ecology,Epidemics,and Population Problems[M].New York:Academic Press,1981,65-85.
    [7] D'Onofrio Alberto.Stability properties of pulse vaccination strategy in SEIR epidemic model[J].Mathematical Biosciences,2002,179(1):57-72. doi: 10.1016/S0025-5564(02)00095-0
    [8] D'Onofrio Alberto. Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times[J].Applied Mathematics and Computation,2004,151(1):181-187. doi: 10.1016/S0096-3003(03)00331-X
    [9] Fine P M.Vectors and vertical transmission: an epidemiologic perspective[J].Annals of the New York Academy of Sciences,1975,266(11):173-194. doi: 10.1111/j.1749-6632.1975.tb35099.x
    [10] Busenberg S,Cooke K L,Pozio M A.Analysis of a model of a vertically transmitted disease[J].Journal of Mathematical Biology,1983,17(3):305-329.
    [11] Busenberg S N,Cooke K L.Models of vertical transmitted diseases with sequenty-continuous dynamics[A].In:Lakshmicantham V Ed.Nonlinear Phenomena in Mathematical Sciences[C].New York:Academic Press,1982,179-187.
    [12] Cook K L,Busenberg S N.Vertical transmission diseases[A].In:Lakshmicantham V Ed.Nonlinear Phenomena in Mathematical Sciences[C].New York:Academic Press,1982,189.
    [13] LU Zhong-hua,CHI Xue-bin,CHEN Lan-sun.The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J].Mathematical and Computer Modelling,2002,36(9):1039-1057. doi: 10.1016/S0895-7177(02)00257-1
    [14] D'Onofrio Alberto. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J].Applied Mathematics Letters,2005,18(7):729-732. doi: 10.1016/j.aml.2004.05.012
    [15] Nokes D, Swinton J.The control of childhood viral infections by pulse vaccination[J].IMA Journal Mathematics Applied Biology Medication,1995,12(1):29-53. doi: 10.1093/imammb/12.1.29
    [16] ZENG Guang-zhao,CHEN Lan-sun.Complexity and asymptotical behavior of an SIRS epidemic model with proportional implse vaccination[J].Advances in Complex Systems,2005,8(4):419-431. doi: 10.1142/S0219525905000580
    [17] Van den Driessche P,Watmough J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540. doi: 10.1007/s002850000032
    [18] Van den Driessche P, Watmough J. Epidemic solutions and endemic catastrophes[J].Fields Institute Communications,2003,36(1):247-257.
    [19] Alexander M E,Moghadas S M.Periodicity in an epidemic model with a generalized non-linear incidence[J].Mathematical Biosciences,2004,189(1):75-96. doi: 10.1016/j.mbs.2004.01.003
    [20] Takeuchi Yasuhiro,MA Wan-biao,Beretta Edoardo. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J].Nonlinear Analysis,2000,42(6):931-947. doi: 10.1016/S0362-546X(99)00138-8
    [21] MA Wan-biao,SONG Mei,Takeuchi Yasuhiro.Global stability of an SIR epidemic model with time delay[J].Applied Mathematics Letters,2004,17(10):1141-1145. doi: 10.1016/j.aml.2003.11.005
    [22] JIN Zhen,MA Zhi-en.The stability of an SIR epidemic model with time delays[J].Mathematical Biosciences and Engineering,2006,3(1):101-109.
    [23] Beretta Edoardo,Hara Tadayuki,MA Wang-bao,et al.Global asymptotic stability of an SIR epidemic model with distributed time delay[J].Nonlinear Analysis,2001,47(6):4107-4115. doi: 10.1016/S0362-546X(01)00528-4
    [24] Lakshmikantham V,Bainov D,Simeonov P.Theory of Impulsive Differential Equations[M].Singapore:World Scientic,1989.
    [25] LIU Xin-zhi,Teo Kok Lay,ZHANG Yi.Absolute stability of impulsive control systems with time delay[J].Nonlinear Analysis,2005,62(3):429-453. doi: 10.1016/j.na.2005.03.052
    [26] KUANG Yang.Delay Differential Equations with Applications in Population Dynamics[M].San Diego, CA:Academic Press,Inc.1993.
    [27] Cooke K L, Van den Driessche P. Analysis of an SEIRS epidemic model with two delays[J].Journal of Mathematical Biology,1996,35(2):240-260. doi: 10.1007/s002850050051
    [28] WANG Wen-di.Global Behavior of an SEIRS epidemic model with time delays[J].Applied Mathematics Letters,2002,15(4):423-428. doi: 10.1016/S0893-9659(01)00153-7
  • 加载中
计量
  • 文章访问数:  2745
  • HTML全文浏览量:  207
  • PDF下载量:  1543
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-23
  • 修回日期:  2007-04-16
  • 刊出日期:  2007-09-15

目录

    /

    返回文章
    返回