留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有共振的2n阶m点边值问题的可解性

江卫华 郭彦平 仇计清

江卫华, 郭彦平, 仇计清. 具有共振的2n阶m点边值问题的可解性[J]. 应用数学和力学, 2007, 28(9): 1087-1094.
引用本文: 江卫华, 郭彦平, 仇计清. 具有共振的2n阶m点边值问题的可解性[J]. 应用数学和力学, 2007, 28(9): 1087-1094.
JIANG Wei-hua, GUO Yan-ping, QIU Ji-qing. Solvability of 2n-Order m-Point Boundary Value Problem at Resonance[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1087-1094.
Citation: JIANG Wei-hua, GUO Yan-ping, QIU Ji-qing. Solvability of 2n-Order m-Point Boundary Value Problem at Resonance[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1087-1094.

具有共振的2n阶m点边值问题的可解性

基金项目: 河北省自然科学基金资助项目(A2006000298);河北省博士基金资助项目(B2004204);河北省科技攻关资助项目(07217141)
详细信息
    作者简介:

    江卫华(1964- ),女,河北人,副教授,博士生(E-mail:jianghua64@sohu.com);仇计清(1956- ),男,教授,博士(联系人.E-mail:qiujiqing@263.net).

  • 中图分类号: O175.8

Solvability of 2n-Order m-Point Boundary Value Problem at Resonance

  • 摘要: 对具有共振的高阶多点边值问题进行研究.首先在具有2n-1阶连续导数的函数全体所成的空间X的子集上定义了指数为0的Fredholm算子L,并在X上定义了投影算子P,使得算子L在其定义域和P的核的交集上是可逆的.然后,在Lebesgue可积函数全体所成的空间Y上定义了投影算子Q,使得L的逆与I-Q及非线性项f的复合是紧算子,其中,I是Y上的恒同算子A·D2最后通过赋予f一定的增长条件,利用Mawhin的重合度理论,证明了具有共振的2n阶m点边值问题至少存在一个解,并给出一个例子验证这一结果.在这里不要求f具有连续性.
  • [1] Feng W,Webb J R L.Solvability of m-point boundary value problems with nonlinear growth[J].J Math Anal Appl,1997,212(2):467-480. doi: 10.1006/jmaa.1997.5520
    [2] Feng W,Webb J R L.Solvability of three-point boundary value problems at resonance[J].Nonlinear Anal Theory Meth Appl,1997,30(6):3227-3238. doi: 10.1016/S0362-546X(96)00118-6
    [3] Liu B.Solvability of multi-point boundary value problem at resonance (Ⅱ)[J].Appl Math Comput,2003,136(2/3):353-377. doi: 10.1016/S0096-3003(02)00050-4
    [4] Gupta C P. Solvability of multi-point boundary value problem at resonance[J].Results Math,1995,28(1):270-276.
    [5] Gupta C P.A second order m-point boundary value problem at resonance[J]. Nonlinear Anal Theory Meth Appl,1995,24(10):1483-1489. doi: 10.1016/0362-546X(94)00204-U
    [6] Gupta C P. Existence theorems for a second order m-point boundary value problem at resonance[J].Int J Math Sci,1995,18(2):705-710. doi: 10.1155/S0161171295000901
    [7] Prezeradzki B,Stanczy R.Solvability of a multi-point boundary value problem at resonance[J].J Math Anal Appl,2001,264(2):253-261. doi: 10.1006/jmaa.2001.7616
    [8] Ma R Y.Multiplicity results for a third order boundary value problem at resonance[J].Nonlinear Anal Theory Meth Appl,1998,32(4):493-499. doi: 10.1016/S0362-546X(97)00494-X
    [9] Gupta C P.On a third-order boundary value problem at resonance[J].Differential Integral Equations,1989,2(1):1-12.
    [10] Nagle R K,Pothoven K L.On a third-order nonlinear boundary value problem at resonance[J].J Math Anal Appl,1995,195(1):148-159. doi: 10.1006/jmaa.1995.1348
    [11] Lu S,Ge W.On the existence of m-point boundary value problem at resonance for higher order differential equation[J].J Math Anal Appl,2003,287(2):522-539. doi: 10.1016/S0022-247X(03)00567-5
    [12] Liu Y,Ge W.Solvability of nonlocal boundary value problems for ordinary differential equations of higher order[J].Nonlinear Anal,2004,57(3):435-458. doi: 10.1016/j.na.2004.02.023
    [13] Mawhin J.Topological degree methods in nonlinear boundary value problems[A].In:NSF-CBMS Regional Conference Series in Mathematics[C].Vol 40.Providence:American Mathematical Society,RI,1979.
  • 加载中
计量
  • 文章访问数:  2649
  • HTML全文浏览量:  164
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-10-23
  • 修回日期:  2007-07-10
  • 刊出日期:  2007-09-15

目录

    /

    返回文章
    返回