留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏性不可压流体的自适应网格技术和基本特性方程分离算法的联合分析

S·图赖维瓦塔纳 P·布恩马勒特 P·瑟雷克 S·封查那帕尼 P·德乔姆凡

S·图赖维瓦塔纳, P·布恩马勒特, P·瑟雷克, S·封查那帕尼, P·德乔姆凡. 黏性不可压流体的自适应网格技术和基本特性方程分离算法的联合分析[J]. 应用数学和力学, 2007, 28(9): 1037-1046.
引用本文: S·图赖维瓦塔纳, P·布恩马勒特, P·瑟雷克, S·封查那帕尼, P·德乔姆凡. 黏性不可压流体的自适应网格技术和基本特性方程分离算法的联合分析[J]. 应用数学和力学, 2007, 28(9): 1037-1046.
Suthee Traivivatana, Parinya Boonmarlet, Patcharee Theeraek, Sutthisak Phongthanapanich, Pramote Dechaumphai. Combined Adaptive Meshing Technique and Characteristic Based Split Algorithm for Viscous Incompressible Flow Analysis[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1037-1046.
Citation: Suthee Traivivatana, Parinya Boonmarlet, Patcharee Theeraek, Sutthisak Phongthanapanich, Pramote Dechaumphai. Combined Adaptive Meshing Technique and Characteristic Based Split Algorithm for Viscous Incompressible Flow Analysis[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1037-1046.

黏性不可压流体的自适应网格技术和基本特性方程分离算法的联合分析

基金项目: 泰国国家基金资助项目

Combined Adaptive Meshing Technique and Characteristic Based Split Algorithm for Viscous Incompressible Flow Analysis

  • 摘要: 组合基本特性方程分离算法和自适应网格技术,分析二维黏性不可压流体.该方法使用3节点三角单元,对速度分量和压力等变量分析,使用等阶次的插值函数.组合解法的主要优点在于,在自适应网格技术中,对解梯度变化大的区域,通过耦合误差估计生成小的单元,利于提高解的精度,在其它区域生成大单元,可以节省时间.最后,通过对一个黏性流体圆柱体绕流问题的瞬态和稳态特性分析,给出了组合解法性能的评价.
  • [1] Yamada Y, Ito K, Yokouchi Y,et al.Finite element analysis of steady fluid and metal flow[J].Finite Elements in Fluids:Viscous Flow and Hydrodynamics,1974,1:73-94.
    [2] Kawahara M.Steady and unsteady finite element analysis of incompressible viscous fluid[J].Finite Elements in Fluids,1974,3:23-54.
    [3] Kawahara M, Yoshimura N, Nakagawa K,et al.Steady and unsteady finite element analysis of incompressible viscous fluid[J].International Journal for Numerical Methods in Engineering,1976,10:437-456. doi: 10.1002/nme.1620100213
    [4] Christie I, Griffiths D F, Mitchell A R, et al. Finite element methods for second order differential equations with significant first derivative[J].International Journal for Numerical Methods in Engineering,1976,10:1389-1396. doi: 10.1002/nme.1620100617
    [5] Heinrich J C, Huyakorn P S,Zienkiewicz O C,et al.An upwind finite element scheme for two-dimensional convective transport equation[J].International Journal for Numerical Methods in Engineering,1977,11:131-143. doi: 10.1002/nme.1620110113
    [6] Brooks A N, Heghes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,1982,32:199-259. doi: 10.1016/0045-7825(82)90071-8
    [7] Wansophark N, Dechaumphai P. Enhancement of streamline upwinding finite element solutions by adaptive meshing technique[J].JSME International Journal Ser B, Fluids and Thermal Engineering,2002,45:770-779. doi: 10.1299/jsmeb.45.770
    [8] Zienkiewicz O C, Codina, R. A General algorithm for compressible and incompressible flow-part Ⅰ:The split, characteristic-based scheme[J].International Journal for Numerical Methods in Fluids,1995,20:869-885. doi: 10.1002/fld.1650200812
    [9] P·德乔姆凡,S·封查那帕尼.用于高速可压缩流体分析的带多维耗散格式的自适应Delaunay三角剖分[J].应用数学和力学,2005,26(10),1216-1228.
    [10] Phongthanapanich S, Dechaumphai P. Evaluation of combined Delaunay triangulation and remeshing for finite element analysis of conductive heat transfer[J].Transactions of the Canadian Society for Mechanical Engineering,2004,27:319-340.
    [11] Frey W H. Mesh Relaxation: A new technique for improving triangulations[J].International Journal for Numerical Methods in Engineering,1991,31:1121-1133. doi: 10.1002/nme.1620310607
    [12] Borouchaki H, George P L, Mohammadi B. Delaunay mesh generation governed by metric specifications-part Ⅱ:Application[J].Finite Elements in Analysis and Design,1997,25:85-109. doi: 10.1016/S0168-874X(96)00065-0
    [13] White F M.Viscous Fluid Flow[M].Third edition.New York: McGraw-Hill, 2005.
    [14] Williamson C H K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low reynolds numbers[J].Journal of Fluid Mechanics,1989,206:579-627. doi: 10.1017/S0022112089002429
    [15] Braza M, Chassaing P, Ha Minh H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J].Journal of Fluid Mechanics,1986,165:79-130. doi: 10.1017/S0022112086003014
    [16] Karniadakis G E, Triantafyllou G S. A passive control of vortex shedding in the wake of a circular cylinder[J].Journal of Fluid Mechanics,1989,199:441-469. doi: 10.1017/S0022112089000431
  • 加载中
计量
  • 文章访问数:  2846
  • HTML全文浏览量:  156
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-08
  • 修回日期:  2007-05-08
  • 刊出日期:  2007-09-15

目录

    /

    返回文章
    返回