留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准晶弹性理论边值问题的可解性

郭丽辉 范天佑

郭丽辉, 范天佑. 准晶弹性理论边值问题的可解性[J]. 应用数学和力学, 2007, 28(8): 949-957.
引用本文: 郭丽辉, 范天佑. 准晶弹性理论边值问题的可解性[J]. 应用数学和力学, 2007, 28(8): 949-957.
GUO Li-hui, FAN Tian-you. Solvability on Boundary-Value Problems of Elasyicity of Three-Dimensional Quasicrystals[J]. Applied Mathematics and Mechanics, 2007, 28(8): 949-957.
Citation: GUO Li-hui, FAN Tian-you. Solvability on Boundary-Value Problems of Elasyicity of Three-Dimensional Quasicrystals[J]. Applied Mathematics and Mechanics, 2007, 28(8): 949-957.

准晶弹性理论边值问题的可解性

基金项目: 国家自然科学基金资助项目(1037201610672022)
详细信息
    作者简介:

    郭丽辉(1970- ),女,辽宁瓦房店人,副教授,硕士.现在通讯址:中国人民公安大学理科部,北京100084(E-mail:guolihui@cppsu.edu.cn);范天佑,教授(联系人.E-mail:tyfan2006@yahoo.com.cn).

  • 中图分类号: O346;O175.4

Solvability on Boundary-Value Problems of Elasyicity of Three-Dimensional Quasicrystals

  • 摘要: 通过给出准晶弹性偏微分方程组边值问题的矩阵表示去定义弱解,利用Korn不等式和函数空间理论证明了这种弱解的存在性与唯一性,从而把经典弹性理论边值问题解的存在性定理推广到准晶弹性理论上,这种理论为发展极其复杂与困难的准晶弹性的偏微分方程的边值问题的数值解提供了一个基础.
  • [1] Shechtman D, Blech I,Gratias D,et al.Metallic phase with long-range orientational order and no translational symmetry[J].Phys Rev Lett,1984,53(20):1951-1953. doi: 10.1103/PhysRevLett.53.1951
    [2] Penrose H.The role of arethtics in pure and applied mathematical research[J].Bull Inst Math Appl,1974,10(3):266-271.
    [3] Radin C.Quasicrystals and geometry[J].Notices of the American Mathematical Society,1996,43(4):416-419.
    [4] Fan T Y, Mai Y W.Elasticity theory, fracture mechanics and some relevant thermal properties of quasicrystalline materials[J].Appl Mech Rev,ASME,2004,57(5):325-344. doi: 10.1115/1.1763591
    [5] Li X F, Fan T Y.New method for solving elasticity problems of some planar quasicrystals and solutions[J].Chinese Phys Lett,1998,15(4):278-280. doi: 10.1088/0256-307X/15/4/016
    [6] Li X F,Fan T Y,Sun Y F.A decagonal quasicrystal with a Griffith crack[J].Philos Mag A,1999,79(8):1943-1952.
    [7] Fan T Y, Li X F,Sun Y F.Moving screw dislocation in a one-dimensional hexagonal quasicrystal[J].Chin Phys,1999,8(4):288-295.
    [8] Fan T Y.A study on specific heat of one-dimensional hexagonal quasicrystals[J].J Phys Condens Matter,1999,11(45):L513-517.
    [9] Liu G T, Fan T Y.Complex method of the plane elasticity in 2D quasicrystals with point group 10 mm ten-fold symmetry and notch problems[J].Sci China,Ser E,2003,46(3):326-336. doi: 10.1360/03ye9036
    [10] Fan T Y,Guo L H.Final governing equation of plane elasticity of icosahedral quasicrystals[J].Phys Lett A,2005,341(4):235-239. doi: 10.1016/j.physleta.2005.04.038
    [11] Li L H,Fan T Y.Final governing equation of plane elasticity of icosahedral quasicrystals and general solution based on stress potential function[J].Chinese Phys Lett,2006,23(9):2519-2521. doi: 10.1088/0256-307X/23/9/047
    [12] Li L H,Fan T Y.Stress potential function formulation and complex variable function method for solving elasticity of quasicrystals of point group 10 and exact solution for notch problem[J].J Phys Condens Matter,2006,18(47):10631-10641. doi: 10.1088/0953-8984/18/47/009
    [13] Zhu A Y,Fan T Y.Elastic field of mode II crack in an icosahedral quasicrystal[J].Chin Phys,2007,16(4):1111-1118. doi: 10.1088/1009-1963/16/4/042
    [14] Zhu Ai Y,Fan T Y,Guo L H.Elastic field for a dislocation in an icosahedral quasicrystal[J].J Phys Condens Matter,2007,19(19):236212. doi: 10.1088/0953-8984/19/23/236212
    [15] 范天佑.准晶数学弹性理论及应用[M].北京:北京理工大学出版社,1999.
    [16] 吴祥法.准晶弹性的数学模拟和数值分析[D].博士学位论文.北京:北京理工大学,1998.
    [17] Ding D H, Yang W G,Wang R H,et al.Generalized elasticity theory of quasicrystals[J].Phys Rev B,1993,48(10):7003-7010. doi: 10.1103/PhysRevB.48.7003
    [18] Courant R, Hilbert D.Methods of Mathematical Physics[M].New York:Interscience Publisher Inc,1955.
    [19] Фикера Г.Теоремы Существования Втеории Упруготи[M].Москва: Мир,1974.
    [20] Кондратьв В А,Олейник О А.Краевые Задачи для Системы Теории Упруготи в Неограниченных Областях,Неравенства Корна[M].Москва: УМН,1988.
    [21] Oden J J,Reddy J N.An Introduction to the Mathematical Theory of Finite Element[M].New York: John Wiley & Sons, 1976.
  • 加载中
计量
  • 文章访问数:  2709
  • HTML全文浏览量:  120
  • PDF下载量:  871
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-03-09
  • 修回日期:  2007-06-10
  • 刊出日期:  2007-08-15

目录

    /

    返回文章
    返回