留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性液体-多孔饱和介质在机械荷载作用下的弹性动力分析

R·库玛 A·迈格拉尼 N·R·伽

R·库玛, A·迈格拉尼, N·R·伽. 各向异性液体-多孔饱和介质在机械荷载作用下的弹性动力分析[J]. 应用数学和力学, 2007, 28(8): 939-948.
引用本文: R·库玛, A·迈格拉尼, N·R·伽. 各向异性液体-多孔饱和介质在机械荷载作用下的弹性动力分析[J]. 应用数学和力学, 2007, 28(8): 939-948.
Rajneesh Kumar, Aseem Miglani, N. R. Garg. Elastodynamic Analysis of an Anisotropic Liquid-Saturated Porous Medium Due to Mechanical Sources[J]. Applied Mathematics and Mechanics, 2007, 28(8): 939-948.
Citation: Rajneesh Kumar, Aseem Miglani, N. R. Garg. Elastodynamic Analysis of an Anisotropic Liquid-Saturated Porous Medium Due to Mechanical Sources[J]. Applied Mathematics and Mechanics, 2007, 28(8): 939-948.

各向异性液体-多孔饱和介质在机械荷载作用下的弹性动力分析

详细信息
  • 中图分类号: O343.6;O357.3;P315

Elastodynamic Analysis of an Anisotropic Liquid-Saturated Porous Medium Due to Mechanical Sources

  • 摘要: 将一个各向异性液体-多孔饱和介质的弹性动力分析,归结为一个横观各向同性液体-多孔饱和介质在机械荷载作用下的变形问题.自然界中有些物理问题,仅在一个方向发生变形,例如,与变形结构和变形柱有关的问题.土力学中,通常假设只有竖向沉降,从而归结为一维多孔弹性模型.采用各向异性液体-多孔饱和介质的一维变形模型,研究了在不同时间和距离下扰动的变化.给出了在不同类型荷载作用下,介质的各向异性对位移分布和应力分布的影响.
  • [1] Armero F, Callari C.An analysis of strong discontinuities in a saturated poroelastic solid[J].Internat J Numer Methods Engrg,1999,46(10):1673-1698. doi: 10.1002/(SICI)1097-0207(19991210)46:10<1673::AID-NME719>3.0.CO;2-S
    [2] Fellah Z E A, Depollier C.Transient acoustic wave propagation in rigid porous media: A time domain approach[J].J Acoust Soc Amer,2000,107(2):683-688. doi: 10.1121/1.428250
    [3] Tajjudin M, Reddy G N.Existance of stoneley waves at an unbounded interface between a poroelastic solid lying over an elastic solid[J].Bull Calcutta Math Soc,2002,94(2):107-112.
    [4] Schanz M, Pryl D.Dynamic fundamental solutions for compressible and incompressible modeled poroelastic continua[J].Internat J Solids Structures,2004,41(15):4047-4073. doi: 10.1016/j.ijsolstr.2004.02.059
    [5] Tajjudin M, Reddy G N.Effect of boundaries on the dynamic interaction of a liquid-filled porous layer and a supporting continuum[J].Sadhana,2005,30(4):527-535. doi: 10.1007/BF02703277
    [6] Santos J E, Ravazzoli C L,Geiser J.On the static and dynamic behavior of fluid saturated composite porous solids: a homogenization approach[J].Internat J Solids Structures,2006,43(5):1224-1238. doi: 10.1016/j.ijsolstr.2005.04.018
    [7] Tajjudin M, Shah S A. Circumferential waves of infinite hollow poroelastic cylinders[J].J Appl Mech,2006,73(4):705-708. doi: 10.1115/1.2164513
    [8] Chen S L, Chen L Z,Pan E.Three-dimensional time-harmonic Green's functions of saturated soil under buried loading[J].Soil Dynamics and Earthquake Engineering,2007,27(5):448-462. doi: 10.1016/j.soildyn.2006.09.006
    [9] Sharma M D, Gogna M L.Wave propagation in anisotropic liquid-saturated porous solids[J].J Acoust Soc Amer,1991,90(2):1068-1073. doi: 10.1121/1.402295
    [10] Sun F, Banks-Lee P,Peng H. Wave propagation theory in anisotropic periodically layered fluid-saturated porous media[J].J Acoust Soc Amer,1993,93(3):1277-1285. doi: 10.1121/1.405412
    [11] Dey S, Sarkar M G.Torsional surface waves in an initially stressed anisotropic porous medium[J].J Engg Mech,2002,128(2):184-189. doi: 10.1061/(ASCE)0733-9399(2002)128:2(184)
    [12] Altay G, Dokmeci M C.On the equations governing the motion of an anisotropic poroelastic material[J].Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2006,462(2072):2373-2396. doi: 10.1098/rspa.2006.1665
    [13] He F S, Huang Y.Basic equations of transversely isotropic fluid-saturated poroelastic media[J].Chinese J Geophysics,1984,11(66):131-137.
    [14] Vgenopoulou I,Beskos D E. Dynamic poroelastic column and borehole problem analysis[J].Soil Dynamics and Earthquake Engineering,1984,11(66):335-345.
    [15] Cui L, Cheng A H D,Kaliakin V N,et al.Finite element analysis of anisotropic poroelasticity: A generalized Mandel's problem and an inclined bore hole problem[J].Internat J Numer Anal Methods Geomech,1996,20:381-401. doi: 10.1002/(SICI)1096-9853(199606)20:6<381::AID-NAG826>3.0.CO;2-Y
    [16] Schanz M, Cheng A H D.Transient wave propagation in a one-dimensional poroelastic column[J].Acta Mechanica,2000,145(1/4):1-18. doi: 10.1007/BF01453641
    [17] Schanz M, Cheng A H D. Dynamic analysis of a one-dimensional poroviscoelastic column[J].J Appl Mech Trans ASME,2001,68(2):192-198. doi: 10.1115/1.1349416
    [18] Stover S C, Ge S, Screaton E J. A one-dimensional analytically based approach for studying poroplastic and viscous consolidation: Application to Woodlark basin, Papua New Guinea[J].J Geophysics Research,2003,108(B9):EPM11 1-14.
    [19] Zhang J, Roegiers J C,Bai M. Dual porosity elastoplastic analysis of non-isothermal one-dimensional consolidation[J].Geotechnical and Geological Engineering,2004,22(4):589-610. doi: 10.1023/B:GEGE.0000047039.96793.25
    [20] Biot M A. The theory of propagation of elastic waves in a fluid saturated porous solid[J].J Acoust Soc Amer,1956,28(2):168-191. doi: 10.1121/1.1908239
    [21] Biot M A. Theory of deformation of a porous viscoelastic anisotropic solid[J].J Appl Phys,1956,27(5):459-467. doi: 10.1063/1.1722402
    [22] Honig G, Hirdes U.A method for the numerical inversion of the Laplace transform[J].J Comput Appl Math,1984,10:113-132. doi: 10.1016/0377-0427(84)90075-X
  • 加载中
计量
  • 文章访问数:  3139
  • HTML全文浏览量:  153
  • PDF下载量:  683
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-10-11
  • 修回日期:  2007-05-08
  • 刊出日期:  2007-08-15

目录

    /

    返回文章
    返回