留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具非线性传染率与生物化学控制的害虫管理[WTHX]S-I[WTBX]模型

焦建军 陈兰荪

焦建军, 陈兰荪. 具非线性传染率与生物化学控制的害虫管理[WTHX]S-I[WTBX]模型[J]. 应用数学和力学, 2007, 28(4): 487-496.
引用本文: 焦建军, 陈兰荪. 具非线性传染率与生物化学控制的害虫管理[WTHX]S-I[WTBX]模型[J]. 应用数学和力学, 2007, 28(4): 487-496.
JIAO Jian-jun, CHEN Lan-sun. Nonlinear Incidence Rate of a Pest Management S-I Model With Biological and Chemical Control Concern[J]. Applied Mathematics and Mechanics, 2007, 28(4): 487-496.
Citation: JIAO Jian-jun, CHEN Lan-sun. Nonlinear Incidence Rate of a Pest Management S-I Model With Biological and Chemical Control Concern[J]. Applied Mathematics and Mechanics, 2007, 28(4): 487-496.

具非线性传染率与生物化学控制的害虫管理[WTHX]S-I[WTBX]模型

基金项目: 国家自然科学基金资助项目(10471117)
详细信息
    作者简介:

    焦建军(1973- ),男,湖南邵阳人,讲师,博士生(联系人.tel:+86-851-8193240;E-mail:jjj7311@126.com;lschen@amss.ac.cn).

  • 中图分类号: O175.2;O175.6

Nonlinear Incidence Rate of a Pest Management S-I Model With Biological and Chemical Control Concern

  • 摘要: 讨论了具有非线性传染率与脉冲控制的害虫管理S-I传染病模型,此模型考虑的是脉冲投放病虫和喷洒农药.不但得到了系统的所有解的一致完全有界,而且得到了害虫灭绝的边界周期解的全局渐进稳定和系统的一致持久的条件.为实际的害虫管理提供了可靠的理论依据.
  • [1] Falcon L A.Use of Bacteria for Microbial Control of Insects[M].New York,N Y:Academic Press,1971.
    [2] Burges H D,Hussey N W.Microbial Control of Insects and Mites[M].New York,N Y:Academic Press,1971,67-95.
    [3] Falcon L A.Problems associated with the use of arthropod viruses in pest control[J].Annu Rev Entomol,1976,[STHZ]. 21[STBZ]. :305-324.
    [4] Bailey N T J.The Mathematical Theory of Infectious Diseases and Its Applications[M].London:Griffin,1975,413.
    [5] Burges H D,Hussey N W.Microbial Control of Insections and Mites[M].New York,N Y:Academic Press,1971,861.
    [6] Fenner F,Ratcliffe F N.Myxomatosis[M].Cambridge:Cambridge University Press,1965,379.
    [7] Davis P E,Myers K,Hoy J B.Biological control among vertebrates[A].In:Huffaker C B,Messenger P S Eds.Theory and Practice of Biological Control[C].New York,N Y:Plenum Press,1976,501-519.
    [8] Tanada Y.Epizootiology of insect diseases[A].In:Debach P Ed.Biological Control of Insect Pests and Weeds[C].London:Chapman and Hall,1964,548-578.
    [9] Barclay H J.Models for pest control using predator release,habitat management and pesticide release in combination[J].J Appl Ecol,1982,19(2):337-348. doi: 10.2307/2403471
    [10] Paneyya J C.A mathematical model of periodically pulse chemotherapy: tumor recurrence and metastasis in a competition environment[J].Bull Math Biol,1996,58(3):425-447. doi: 10.1007/BF02460591
    [11] d'Onofrio A.Stability properties of pulse vaccination strategy in SEIR epidemic model[J].Math Biol,2002,179(1):57-72.
    [12] Van Lanteren J C.Integrated pest managemant in protected crops[A].In:Dent D Ed.Integrated Pest Management[C].London:Chapman and Hall,1995.
    [13] Roberts M G,Kao R R.The dynamics of an infectious disease in a population with birth pulse[J].Math Biol,1998,149(1):23-36.
    [14] Xiao Y N,Chen L S.A ratio-depengent predator-prey model with disease in the prey[J].Appl Math Comput,2002,131:397-414. doi: 10.1016/S0096-3003(01)00156-4
    [15] Xiao Y N,Chen L S.An SIS epidemic model with stage structure and a delay[J].Acta Math Appl English Series,2002,[STHZ]. 18[STBZ]. (4):607-618.
    [16] Xiao Y N,Chen L S,Bosh F V D.Dynamical behavior for stage-structured SIR infectious disease model[J].Nonlinear Analysis:RWA,2002,[STHZ]. 3[STBZ]. (2):175-190.
    [17] Xiao Y N,Chen L S.On an SIS epidemic model with stage-structure[J].Journal of System Science and Complexity,2003,16(2):275-288.
    [18] Lu Z H,Gang S J,Chen L S.Analysis of an SI epidemic with nonlinear transmission and stage structure[J].Acta Math Science,2003,23(4):440-446.
    [19] Hethcote H.The mathematics of infectious disease[J].SIAM Review,2002,42:599-653.
    [20] Anderson R M,May R M.Regulation and stability of host-parasite population interactions—Ⅰ Regulartory processes[J].J Anim Ecol,1978,[STHZ]. 47[STBZ]. (1):219-247.
    [21] Goh B S.The potential utility of control theory to pest management[J].Proc Ecol Soc,1971,6:84-89.
    [22] Gilbert N,Gutierrez A P,Frazer B D,et al.Ecological Relationships[M].San Francisco,Calif:W H Freeman and Co, 1976.
    [23] Wickwire K.Mathematical models for the control of pests and infectious diseases:a survey[J].Theoret Population Biol,1977,11(2):182-238. doi: 10.1016/0040-5809(77)90025-9
    [24] Anderson R,May R.Population biological of infectious diseases[M].Berlin, Heidelberg,New York: Springer,1982.
    [25] Anderson R,May R.Infectious Diseases of Humen: Dynamics and Control[M].Oxford:Oxford University Press,1991.
    [26] De Jong M C M,Diekmann O,Heesterbeek J A P.How dose tranmission depend on population size? in human infectious diseases[A].Mollison D Ed.Epidemic Models[C].Cambridge UK:Cambridge University Press,1995,84-94.
    [27] LIU Wei-min,Levin S A,Iwasa Y.Influence of nonlinear incidence rates upon the behavior of SIRS Epidemiological models[J].J Math Biol,1986,23(2):187-204. doi: 10.1007/BF00276956
    [28] LIU Wei-min,Hethcote H W,Levin S A.Dynamical behavior of epidemiological models with nonlinear incidence rates[J].J Math Biol,1987,25(4):359-380. doi: 10.1007/BF00277162
    [29] 陈兰荪,陈健.非线性生物动力学系统[M].北京:科学出版社,1993.
    [30] Capasso V,Serio G.A generalization of the Kermack-Mckendrick deterministic epidemic model[J].Math Biosci,1978,42:43-61. doi: 10.1016/0025-5564(78)90006-8
    [31] Ruan S,Wang W.Dynamical behavior of an epidemic model with a nonlinear incidence rate[J].J Differential Equations,2003,188:135-163. doi: 10.1016/S0022-0396(02)00089-X
    [32] Lakshmikantham V,Bainov D D,Simeonov P.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
    [33] Bainov D,Simeonov P.Impulsive Differential Equations:Periodic Solutions and Applications[M].Pitman Monographs and Surveys in Pure and Applied Mathematics.66.Longman Scientific Technical,1993.
    [34] Sangoh Bean.Management and Analysis of Biological Populations[M].Elsevier Scientific Press Company,1980.
  • 加载中
计量
  • 文章访问数:  2903
  • HTML全文浏览量:  154
  • PDF下载量:  763
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-08-11
  • 修回日期:  2007-01-23
  • 刊出日期:  2007-04-15

目录

    /

    返回文章
    返回