留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电材料中两个非对称平行裂纹的基本解

周振功 王彪

周振功, 王彪. 压电材料中两个非对称平行裂纹的基本解[J]. 应用数学和力学, 2007, 28(4): 379-390.
引用本文: 周振功, 王彪. 压电材料中两个非对称平行裂纹的基本解[J]. 应用数学和力学, 2007, 28(4): 379-390.
ZHOU Zhen-gong, WANG Biao. Basic Solution of Two Parallel Non-Symmetric Permeable Cracks in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2007, 28(4): 379-390.
Citation: ZHOU Zhen-gong, WANG Biao. Basic Solution of Two Parallel Non-Symmetric Permeable Cracks in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2007, 28(4): 379-390.

压电材料中两个非对称平行裂纹的基本解

基金项目: 国家自然科学基金资助项目(10572043;10572155);黑龙江省杰出青年基金资助项目(JC04-08)
详细信息
    作者简介:

    周振功(1963- ),河南镇平人,教授,博导,博士(联系人:Tel:+86-451-86402396;Fax:+86-451-86402386;E-mail:zhouzhg@hit.edu.cn).

  • 中图分类号: O346.53

Basic Solution of Two Parallel Non-Symmetric Permeable Cracks in Piezoelectric Materials

  • 摘要: 采用Schmidt方法分析压电材料中非对称平行的双可导通裂纹的断裂性能.利用Fourier变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程.为了求解对偶积分方程,直接把裂纹面位移差函数展开成Jacobi多项式形式.最终得到了裂纹的应力强度因子与电位移强度因子之间的关系.数值结果表明,应力强度因子和电位移强度因子与裂纹间的距离、裂纹的几何尺寸有关;与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子.同时可以发现裂纹间的“屏蔽”效应也在压电材料中出现.
  • [1] Beom H G,Atluri S N. Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media[J].International Journal of Fracture,1996,75(2):163-183. doi: 10.1007/BF00034075
    [2] Gao H J, Zhang T Y,Tong P.Local and global energy rates for an elastically yielded crack in piezoelectric ceramics[J].Journal of Mechanics and Physics of Solids,1997,45(2):491-510. doi: 10.1016/S0022-5096(96)00108-1
    [3] Han X L, WANG Tzu-chiang. Interacting multiple cracks in piezoelectric materials[J].International Journal of Solids and Structures,1999,36(27):4183-4202. doi: 10.1016/S0020-7683(98)00187-5
    [4] Yu S W, Chen Z T. Transient response of a cracked infinite piezoelectric strip under anti-plane impact[J].Fatigue of Engineering Materials and Structures,1998,21(3):1381-1388. doi: 10.1046/j.1460-2695.1998.00108.x
    [5] Zhang T Y, Hack J E. Mode-III cracks in piezoelectric materials[J].Journal of Applied Physics,1992,71(4):5865-5870. doi: 10.1063/1.350483
    [6] Sih G C, Zuo J Z. Energy density formulation and interpretation of cracking behavior for piezoelectric ceramics[J].Theoretical and Applied Fracture Mechanics,2000,34(2):123-141. doi: 10.1016/S0167-8442(00)00031-8
    [7] Deeg W E F. The analysis of dislocation, crack and inclusion problems in piezoelectric solids[D].Ph D thesis.California:Stanford University,1980.
    [8] Pak Y E. Crack extension force in a piezoelectric material[J].Journal of Applied Mechanics,1990,57(3):647-653. doi: 10.1115/1.2897071
    [9] Han J J, Chen Y H. Multiple parallel cracks interaction problem in piezoelectric ceramics[J].International Journal of Solids and Structures,1999,36(6): 3375-3390. doi: 10.1016/S0020-7683(98)00149-8
    [10] Parton V S. Fracture mechanics of piezoelectric materials[J].Acta Astronautra,1976,3(4):671-683. doi: 10.1016/0094-5765(76)90105-3
    [11] Hao T H, Shen Z Y. A new electric boundary condition of electric fracture mechanics and its applications[J].Engineering Fracture Mechanics,1994,47(6): 793-802. doi: 10.1016/0013-7944(94)90059-0
    [12] Soh A K, Fang D N, Lee K L. Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading[J].European Journal of Mechchanics,A Solid,2000,19(6):961-977. doi: 10.1016/S0997-7538(00)01107-4
    [13] Zhou Z G, Wang B. The behavior of two parallel symmetry permeable interface cracks in a piezoelectric layer bonded to two half piezoelectric materials planes[J].International Journal of Solids and Structures,2002,39(17):4485-4500. doi: 10.1016/S0020-7683(02)00347-5
    [14] 周振功,王彪. 压电材料中两平行对称可导通裂纹断裂性能分析[J]. 应用数学和力学,2002,23(12):1211-1219.
    [15] 孙建亮,周振功,王彪. 压电材料中两平行不相等界面裂纹的动态特性研究[J].应用数学和力学,2005,26(2):145-154.
    [16] Sun J L, Zhou Z G, Wang B. Dynamic behavior of unequal parallel permeable interface multi-cracks in a piezoelectric layer bonded to two piezoelectric materials half planes[J].European Journal of Mechanics,A Solids,2004,23(6): 993-1005. doi: 10.1016/j.euromechsol.2004.05.005
    [17] Morse P M, Feshbach H.Methods of Theoretical Physics[M].Vol 1.New York:McGraw-Hill,1958,828-930.
    [18] Gradshteyn I S,Ryzhik I M.Table of Integral, Series and Products[M].New York:Academic Press,1980,1035-1037.
    [19] Erdelyi A.Tables of Integral Transforms[M].Vol 1.New York:McGraw-Hill,1954, 34-89.
    [20] 周振功,王彪. 压电压磁复合材料中一对平行裂纹对弹性波的散射[J].应用数学和力学,2006,27(5):519-526.
    [21] Ratwani M, Gupta G D. Interaction between parallel cracks in layered composites[J].International Journal of Solids and Structures,1974,10(7):701-708. doi: 10.1016/0020-7683(74)90034-1
  • 加载中
计量
  • 文章访问数:  2820
  • HTML全文浏览量:  98
  • PDF下载量:  697
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-11-08
  • 修回日期:  2007-01-25
  • 刊出日期:  2007-04-15

目录

    /

    返回文章
    返回