Stochastic Discrete Model of a Two-Stage Isolation System With Rigid Limiters
-
摘要: 研究由多刚体组成的带刚性限位的双层隔振系统,对其冲击后受到周期性外激励和低强度噪声扰动共同作用下可能会产生的碰撞进行了分析.基于单向约束多体动力学理论,导出了此隔振系统的最大Poincaré映射,建立了其冲击后的零次近似随机离散模型和一次近似随机离散模型.通过对一MTU公司的柴油机隔振系统冲击作用后振动响应的调查指出,由于可能发生间歇性碰撞,该系统呈现复杂的非线性特性.零次近似模型和一次近似模型有较大的区别,低强度的噪声也会对系统产生较大的影响.得到的结果对如何正确设计带刚性限位的双层隔振系统提供了理论参考依据.
-
关键词:
- Poincaré映射 /
- 随机vibro-impact系统 /
- 双层隔振
Abstract: The possible intermittent impacts of a two-stage isolation system with rigid limiters have been investigated. The isolation system is under periodic external excitation disturbed by small stationary Gaussian white noise after shock. The maximal impact Poincar map is proposed based on the multi-body dynamics with unilateral constraints. Then in the period after shock, the zero order approximate stochastic discrete model and the first order approximate stochastic model were developed. The real isolation system of an MTU diesel engine was used to evaluate the established model. After calculating numerical example, the effects of noise excitation on the isolation system were discussed. The results show that the property of the system is complicated due to intermittent impact. The difference between zero order model and the first order model may be great. The effect of small noise is obvious. The results may be expected useful to the naval designers.-
Key words:
- Poincar map /
- stochastic vibro-impact system /
- two-stage isolation
-
[1] Bishop S R.Impact oscillators[J].Phil Trans R Soc A,1994,347:347—351. doi: 10.1098/rsta.1994.0047 [2] Brogliato B.Nonsmooth Mechanics[M].London:Springer-Verlag,1999,173—228. [3] Kapitaniak T.Chaos in Systems With Noise[M].Singapore:World Scientific,1990,65—75. [4] FENG Qi,HE Hua.Modeling of the Mean Poincare map on a class of random impact oscillators[J].European Journal of Mechanics A/Solids,2003,22:267—281. doi: 10.1016/S0997-7538(03)00015-9 [5] Nigam N C.Introduction to Random Vibrations[M].Cambridge, Massachusetts:The MIT Press,1983,175—219.
计量
- 文章访问数: 2510
- HTML全文浏览量: 98
- PDF下载量: 693
- 被引次数: 0