留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有立方对称性及两个弛豫时间的微极热弹性介质中调和时间源引起的变形

R·库玛 P·额拉瓦尼亚

R·库玛, P·额拉瓦尼亚. 具有立方对称性及两个弛豫时间的微极热弹性介质中调和时间源引起的变形[J]. 应用数学和力学, 2006, 27(6): 690-700.
引用本文: R·库玛, P·额拉瓦尼亚. 具有立方对称性及两个弛豫时间的微极热弹性介质中调和时间源引起的变形[J]. 应用数学和力学, 2006, 27(6): 690-700.
Rajneesh Kumar, Praveen Ailawalia. Deformation Due to Time Harmonic Sources in Micropolar Thermoelastic Medium Possessing Cubic Symmetry With Two Relaxation Times[J]. Applied Mathematics and Mechanics, 2006, 27(6): 690-700.
Citation: Rajneesh Kumar, Praveen Ailawalia. Deformation Due to Time Harmonic Sources in Micropolar Thermoelastic Medium Possessing Cubic Symmetry With Two Relaxation Times[J]. Applied Mathematics and Mechanics, 2006, 27(6): 690-700.

具有立方对称性及两个弛豫时间的微极热弹性介质中调和时间源引起的变形

详细信息
    作者简介:

    R·库玛(联系人.E-mail:rajneesh-kuk@rediffmail.com);P·额拉互尼亚(E-mail:praveen-2117@rediffmail.com).

  • 中图分类号: O343.6

Deformation Due to Time Harmonic Sources in Micropolar Thermoelastic Medium Possessing Cubic Symmetry With Two Relaxation Times

  • 摘要: 研究了具有立方对称性及两个弛豫时间的微极热弹性介质在调和时间源中的响应.采用了Fourier变换以及数值逆变换技术.在物理域中,得到了位移、应力、微转动和温度分布的数值结果.将微极立方晶体法向位移、法向力应力、切向耦合应力和温度分布的计算结果,与微极各向同性固体的结果进行比较.绘制了指定材料的数值结果图形.还推断了某些特殊情况的结果.
  • [1] Biot M.Thermoelasticity and irreversible thermodynamics[J].J Appl Phys, 1956,27(3):240—253. doi: 10.1063/1.1722351
    [2] Muller J M.The coldness of universal function in thermoelastic bodies[J].Arch Ration Mech Anal,1971,41(5):319—332.
    [3] Green A E,Laws N.On the entropy production inequality[J].Arch Ration Mech Anal,1972,45(1):47—53.
    [4] Green A E,Lindsay K A.Thermoelasticity[J].J Elasticity,1972,2:1—5. doi: 10.1007/BF00045689
    [5] Suhubi E S.Thermoelastic solids[A].In:Eringen A C,Ed.Continuum Physics[C].Vol 2.Part 2,Chapter2. New York :Academic Press, 1975.
    [6] Eringen A C.Foundations of Micropolar Thermoelasticity[M].Intern Cent for Mech Studies. Course and Lectures.No 23. Wien:Springer-Verlag,1970.
    [7] Nowacki M.Couple-stresses in the theory of thermoelasticity[A].In: Parkus H,Sedov L I,Eds.Proc IUTAM Symposia[C].Vienna: Springer-Verlag, 1966, 259—278.
    [8] Iesan D.The plane micropolar strain of orthotropic elastic solids[J].Arch Mech,1973,25(3):547—561.
    [9] Iesan D.Torsion of anisotropic elastic cylinders[J].Z Angew Math Mech,1974,54(12):773—779. doi: 10.1002/zamm.19740541104
    [10] Iesan D. Bending of orthotropic micropolar elastic beams by terminal couples[J].An St Uni Iasi,1974,20(2):411—418.
    [11] Nakamura S,Benedict R, Lakes R. Finite element method for orthotropic micropolar elasticity[J].Internat J Engg Sci,1984,22(3):319—330. doi: 10.1016/0020-7225(84)90013-2
    [12] Kumar R, Choudhary S. Influence and Green's function for orthotropic micropolar continua[J].Archives of Mechanics,2002,54(4):185—198.
    [13] Kumar R, Choudhary S. Dynamical behavior of orthotropic micropolar elastic medium[J].Journal of Vibration and Control,2002,8(8):1053—1069. doi: 10.1177/107754602029582
    [14] Kumar R, Choudhary S. Mechanical sources in orthotropic micropolar continua[J].Proc Indian Acad Sci(Earth Plant Sci),2002,111(2):133—141.
    [15] Kumar R, Choudhary S. Response of orthotropic micropolar elastic medium due to various sources[J].Meccanica,2003,38(3):349—368. doi: 10.1023/A:1023365920783
    [16] Kumar R, Choudhary S. Response of orthotropic micropolar elastic medium due to time harmonic sources[J].Sadhana,2004,29(1):83—92. doi: 10.1007/BF02707002
    [17] Minagawa S, Arakawa K, Yamada M. Dispersion curves for waves in a cubic micropolar medium with reference to estimations of the material constants for diamond[J].Bull JSME,1981,24(187):22—28. doi: 10.1299/jsme1958.24.22
    [18] Kumar R, Rani L.Elastodynamics of time harmonic sources in a thermally conducting cubic crystal[J].Internat J Appl Mech Engg,2003,8(4):637—650.
    [19] Kumar R, Ailawalia P. Behaviour of micropolar cubic crystal due to various sources[J].Journal of Sound and Vibration,2005,283(3/5):875—890. doi: 10.1016/j.jsv.2004.07.001
    [20] Kumar R, Ailawalia P. Deformation in micropolar cubic crystal due to various sources[J].Internat J Solids Struct,2005,42(23):5931—5944. doi: 10.1016/j.ijsolstr.2005.01.022
    [21] Press W H, Teukolsky S A, Vellerling W T,et al.Numerical Recipes[M].Cambridge: Cambridge University Press,1986.
    [22] Eringen A C. Plane waves in non-local micropolar elasticity[J].Internat J Engg Sci,1984,22(8/10):1113—1121. doi: 10.1016/0020-7225(84)90112-5
    [23] Dhaliwal R S, Singh A.Dynamic Coupled Thermoelasticity[M].New Delhi, India:Hindustan Publication Corporation,1980,726.
    [24] Eringen A C. Linear theory of micropolar elasticity[J].J Math Mech,1966,15(6):909—923.
  • 加载中
计量
  • 文章访问数:  2978
  • HTML全文浏览量:  135
  • PDF下载量:  532
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-05-23
  • 修回日期:  2005-08-18
  • 刊出日期:  2006-06-15

目录

    /

    返回文章
    返回