Hamiltonian Mechanics on K3/4hler Manifolds
-
摘要: 利用力学原理、现在微分几何理论和高等微积分把Hamilton力学推广至K?hler流形上,建立K?hler流形上Hamilton力学,并得到Hamilton向量场、Hamilton方程等复的数学形式.Abstract: The mechanical principle,the theory of Modem geometry and advanced calculus,Hamiltonian mechanic was generalized to K3/4hler manifolds,and the Hamiltonian Mechanic on K3/4hler Manifolds was established.Then the complex mathematical aspect of Hamiltonian vector field and Hamilton's equations etc was obtained.
-
Key words:
- K3/4hler manifold /
- connection /
- absolute differential /
- Lie derivative /
- Hamiltonian vector /
- 1-parameter group
-
[1] 干特马赫尔[WT5”BZ]. Ф Р.分析力学[M].钟奉俄,薛问西 译.北京:人民教育出版社,1963,1—163. [2] Arnold V I.Mathematical Methods of Classical Mechanics[M].New York:Springer-Verlag,1978,1—300. [3] Arnold V I.Mathematical Aspect of Classical and Celestial Mechanics.Encyclopaedia of Mathematical Sciences,Vol 3.Dynamical Systems3[M].New York:Springer-Verlag,1985,1—48. [4] Curtis W D,Miller F R.Differential Manifolds and Theoretical Physics[M].Orlando,Florida:Academic Press Inc,1985,1—191. [5] Dubrorin B A,Fomenko A T,Novikov S P.Modern Geometry—Methods and Application[M].PartsⅠ,PartsⅡ.New York:Springer-Verlag,New York Inc,1984,1—374,1—357. [6] von Westenholz C.Differential Forms in Mathematical Physics[M].Amsterdam,New York,Oxford:North-Holland Publishing Company,1978,335—439. [7] 张荣业.关于Khler流形上的Newton力学[J].应用数学和力学,1996,17(8):709—720.
计量
- 文章访问数: 2704
- HTML全文浏览量: 127
- PDF下载量: 795
- 被引次数: 0