Numerical Method Based on Hamilton System and Symplectic Algorithm to Differential Games
-
摘要: 微分对策求解往往涉及到困难的两点边值问题(TPBV),将线性二次型微分对策问题归结于Hamilton体系.对Hamilton系统,辛几何算法具有能复制Hamilton系统的动态结构并保持相平面上的测度的优点.从Hamilton系统角度,探讨了线性二次型微分对策系统的辛性质;作为尝试,对无限期间线性二次型微分对策的计算引入Symplectic-Runge-Kutta算法.给出了一个数值计算实例,从结果可以说明这种方法的可行,也体现了辛算法对系统的能量具有良好的守恒性.
-
关键词:
- 微分对策 /
- Hamilton系统 /
- 辛几何算法 /
- 线性二次型
Abstract: The resolution of differential games often concerns the difficult problem of Two Point Border Value(TPBV),then ascribe linear quadratic differential game to Hamilton system.To Hamilton system,the algorithm of symplectic geometry has the merits of being able to copy the dynamic structure of Hamilton system and to keep the measure of phase plane.From the point of view of Hamilton system,the symplectic characters of linear quadratic differential game were probed;And as a try,Symplectic-Runge-Kutta algorithm was inducted to the resolution of infinite horizon linear quadratic differential game.An example of numerical calculation was presented,and the result can illuminate the feasiblity of this method.At the same time,it embodies the fine conservation characteristics of symplectic algorithm to system energy.-
Key words:
- differential game /
- Hamilton system /
- algorithm of symplectic geometry /
- linear quadratic
-
[1] FENG Kang.Symplectic difference schemes for linear Hamiltonian cononical systems[J].Journal of Computational Mathematics,1990,8(4):371—380. [2] 冯康,秦孟兆.Hamilton系统的辛几何算法[M].杭州:浙江科学技术出版社,2003,271—344. [3] Guiomar Martin Herran.Symplectic methods for the solution to riccati matrix equations related to macroeconomic models[J].Computational Economics,1999,13(1):61—91. doi: 10.1023/A:1008669224277 [4] 杨然,周钢,许晓鸣.求解最优控制问题的改进辛几何算法[J].上海交通大学学报, 2000,34(5):612—614. [5] 李登峰.微分对策[M].北京:国防工业出版社,2001,5—180. [6] 廖新浩,刘林.Hamilton系统数值计算的新方法[J].天文学进展,1996,14(1):3—11. [7] DENG Zi-chen.The optimal solution of the constrained nonlinear control system[J].Computers & Structures,1994,53(5):1115—1121.
计量
- 文章访问数: 2753
- HTML全文浏览量: 155
- PDF下载量: 836
- 被引次数: 0