留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刚体动力学方程的一个辛积分方法

路英杰 任革学

路英杰, 任革学. 刚体动力学方程的一个辛积分方法[J]. 应用数学和力学, 2006, 27(1): 47-52.
引用本文: 路英杰, 任革学. 刚体动力学方程的一个辛积分方法[J]. 应用数学和力学, 2006, 27(1): 47-52.
LU Ying-jie, REN Ge-xue. A Symplectic Algorithm for the Dynamics of a Rigid Body[J]. Applied Mathematics and Mechanics, 2006, 27(1): 47-52.
Citation: LU Ying-jie, REN Ge-xue. A Symplectic Algorithm for the Dynamics of a Rigid Body[J]. Applied Mathematics and Mechanics, 2006, 27(1): 47-52.

刚体动力学方程的一个辛积分方法

详细信息
    作者简介:

    路英杰(1978- ),男,北京市人,博士(联系人.Tel:+86-10-62772637;E-mail:lu-yj04@mails.tsinghua.edu.cn).

  • 中图分类号: O313.3

A Symplectic Algorithm for the Dynamics of a Rigid Body

  • 摘要: 针对四元数和对应广义动量表示的刚体定点动力学方程,利用一种位移格式的微分—代数方程积分方案,实现了非独立广义动量表示的拉格朗日方程的辛积分算法.数值实验显示该算法具有精度高和保持系统守恒量的特点.更为重要的是,广义动量表示的拉格朗日方程较之传统形式的拉格朗日方程在辛积分中表现出独特的优越性.
  • [1] 冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003,271—344.
    [2] Edward J Haug.Computer Aided Kinematics and Dynamics of Mechanical Systems[M].Needham Heights, Massachusetts, U S: Allyn and Bacon,1989,305—335.
    [3] CHEN Shan-shin,Daniel A Tortorelli.An energy-conserving and filtering method for stiff nonlinear multibody dynamics[J].Multibody System Dynamics,2003,10(4):341—362. doi: 10.1023/A:1026237902561
    [4] Elisabet V Lens,Alberto Cardona,Michel Geradin.Energy preserving time integration for constrained multibody systems[J].Multibody System Dynamics,2004,11(1):41—61. doi: 10.1023/B:MUBO.0000014901.06757.bb
    [5] Chen S,Tortorelli D A,Hansen J M.Unconditionally energy stable implicit time integration: Application to multibody system analysis and design[J].International Journal for Numerical Methods in Engineering,2000,48(6):791—822. doi: 10.1002/(SICI)1097-0207(20000630)48:6<791::AID-NME859>3.0.CO;2-Z
    [6] Simo J C,Tarnow N, Wong K.Exact energy-momentum conserving algorithms and sympectic schemes for nonlinear dynamics[J].Computer Methods in Applied Mechanics and Engineering,1992,100(1):63—116. doi: 10.1016/0045-7825(92)90115-Z
    [7] Channell P,Scovel C.Symplectic integration of Hamiltonian systems[J].Nonlinearity,1990,3(2):231—259. doi: 10.1088/0951-7715/3/2/001
    [8] Leimkuhler B,S Reich.Symplectic integration of constrained Hamiltonian systems[J].Math Comp,1994,63(208):589—605. doi: 10.1090/S0025-5718-1994-1250772-7
    [9] Barth E,Leimkuhler B.Symplectic methods for conservative multibody systems[A].In:Mardsen J E,Patrick G W,Shadwick W F.Integration Algorithms for Classical Mechanics, Fields Institute Communications[C].U S:American Mathematical Society,1996,25—43.
    [10] Leimkuhler B,Skeel R D.Symplectic numerical integrators in constrained Hamiltonian systems[J].J Comp Phys,1994,112(1):117—125. doi: 10.1006/jcph.1994.1085
    [11] Baumgarte J W.A new method of stabilization for holonomic constraints[J].ASME Journal of Applied Mechanics,1983,50(4):869—870. doi: 10.1115/1.3167159
  • 加载中
计量
  • 文章访问数:  3529
  • HTML全文浏览量:  160
  • PDF下载量:  1488
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-05-14
  • 修回日期:  2005-09-10
  • 刊出日期:  2006-01-15

目录

    /

    返回文章
    返回