留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无网格Galerkin法与有限元耦合新算法

赵光明 宋顺成

赵光明, 宋顺成. 无网格Galerkin法与有限元耦合新算法[J]. 应用数学和力学, 2005, 26(8): 899-904.
引用本文: 赵光明, 宋顺成. 无网格Galerkin法与有限元耦合新算法[J]. 应用数学和力学, 2005, 26(8): 899-904.
ZHAO Guang-ming, SONG Shun-cheng. New Algorithm of Coupling Element-Free Galerkin With Finite Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(8): 899-904.
Citation: ZHAO Guang-ming, SONG Shun-cheng. New Algorithm of Coupling Element-Free Galerkin With Finite Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(8): 899-904.

无网格Galerkin法与有限元耦合新算法

详细信息
    作者简介:

    赵光明(1976- ),男,安徽桐城人,博士生(联系人.Tel:+86-554-6668455;E-mail:guangmingzhao@163.com).

  • 中图分类号: O302

New Algorithm of Coupling Element-Free Galerkin With Finite Element Method

  • 摘要: 通过构造新的斜坡函数,把无网格Galerkin法与有限元耦合算法应用到全域范围,并使其能适应不同连接域内单元结点构成,既满足了本质边界条件实现的需要,又能方便灵活的布置无网格点和有限元法中的单元,满足复杂计算要求.计算结果与理论解比较表明所提出的方法是可行和有效的.
  • [1] Nayroles B,Touzot G,Villon P.Generalizing the finite element method: diffuse approximation and diffuse elements[J].Computational Mechanics,1992,10(5):307—318. doi: 10.1007/BF00364252
    [2] Belytschko T,Lu Y Y,Gu L.Element-free Galerkin method[J].Internat J Nunmer Methods Engrg,1994,37(2):229—256. doi: 10.1002/nme.1620370205
    [3] Belytschko T,Lu Y Y,Gu L,et al.Element-free Galerkin methods for static and dynamic fracture[J].Internat J Solids Structure,1995,32(17/18):2547—2570. doi: 10.1016/0020-7683(94)00282-2
    [4] Wang Y H,Li W D.Parametric study for an efficient meshless method in vibration analysis[J].Journal of Sound and Vibration,2002,255(2):261—279. doi: 10.1006/jsvi.2001.4154
    [5] Mukherjee S,YU Xie.On boundary conditions in the element free Galerkin method[J].Computational Mechanics,1997,19(4):264—270. doi: 10.1007/s004660050175
    [6] Zhu T,Atluri.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in element free Galerkin method[J].Computational Mechanics,1998,21(3):211—221. doi: 10.1007/s004660050296
    [7] Lu Y Y,Belytschko T,Gu L. A new implementation of the element free Galerkin method[J].Comput Methods Appl Mech Engrg,1994,113(3/4):397—414. doi: 10.1016/0045-7825(94)90056-6
    [8] Krongauz Y,Belytschko T.Enforcement of essential boundary conditions in meshless approximation using finite element[J].Comput Methods Appl Mech Engrg,1996,131(1/2):133—145. doi: 10.1016/0045-7825(95)00954-X
    [9] Belytschko T,Organ D Y,Krougauz Y.A Coupled finite element-element free Galerkin methods[J].Computational Mechanics,1995,17(3):186—195. doi: 10.1007/BF00364080
    [10] Hegan D.Element free Galerkin method in combination with finite element approaches[J].Comput Methods Appl Mech Engrg,1996,135(1/2):143—166. doi: 10.1016/0045-7825(96)00994-2
    [11] 王卫东,赵国群,栾贻国.无网格方法中本质边界条件的处理[J].力学季刊,2002,23(4):521—527.
    [12] Belytschko T.Meshless method: an overview and recent developments[J].Comput Methods Appl Mech Engrg,1996,139(1/4):3—47. doi: 10.1016/S0045-7825(96)01078-X
    [13] Dolbow T,Belytschko T.Volumetric locking in the element free Galerkin method[J].Internat J Numer Methods Engrg,1999,46(6):925—942. doi: 10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y
    [14] Atkinand R J,Fox N.An Introduction to the Theory of Elasticity[M].London:Longman, 1980.
    [15] Chung H J,Belytschko T.An error estimate in the EFG method[J].Computational Mechanics,1998,21(2):91—100. doi: 10.1007/s004660050286
  • 加载中
计量
  • 文章访问数:  2703
  • HTML全文浏览量:  173
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-01-10
  • 修回日期:  2005-05-08
  • 刊出日期:  2005-08-15

目录

    /

    返回文章
    返回