Asymptotic Theory of Initial Value Problems for Nonlinear Perturbed Klein-Gordon Equations
-
摘要: 在二维空间中研究一类非线性扰动Klein-Gordon方程初值问题解的渐近理论. 首先利用压缩映象原理,结合一些先验估计式及Bessel函数的收敛性,根据Klein-Gordon方程初值问题的等价积分方程,在二次连续可微空间中得到了初值问题解的适定性;其次,利用扰动方法构造了初值问题的形式近似解,并得到了该形式近似解的渐近合理性;最后给出了所得渐近理论的一个应用,用渐近近似定理分析了一个具体的非线性Klein-Gordon方程初值问题解的渐近近似程度.
-
关键词:
- Klein-Gordon方程 /
- 适定性 /
- 渐近理论 /
- 形式近似解 /
- 应用
Abstract: The asymptotic theory of initial value problems for a class of nonlinear perturbed Klein- Gordon equations in two space dimensions is considered. Firstly, using the contraction mapping principle, combining some priori estimates and the convergence of Bessel function, the well-posedness of solutions of the initial value problem in twice continuous differentiable space was obtained according to the equivalent integral equation of initial value problem for the Klein-Gordon equations. Next, formal approximations of initial value problem was constructed by perturbation method and the asymptotic validity of the formal approximation is got. Finally, an application of the asymptotic theory was given, the asymptotic approximation degree of solutions for the initial value problem of a specific nonlinear Klein-Gordon equation was analyzed by using the asymptotic approximation theorem.-
Key words:
- Klein-Gordon equations /
- well-posedness /
- asymptotic theory /
- formal approximations /
- application
-
[1] Van Horssen W T.Asymptotics for a class of semilinear hyperbolic equations with an application to a problem with a quadratic nonlinearity[J].Non Anal TMA,1992,19(6):501—530. doi: 10.1016/0362-546X(92)90018-A [2] Van Horssen W T,Van Der Burgh A H.On initial boundary value problems for weakly semilinear telegraph equations. asymptotic theory and application[J].SIAM J Appl Math,1988,48(4):719—736. doi: 10.1137/0148041 [3] WANG Bao-xiang. On existence and scattering for critical and subcritical nonlinear Klein-Gordon equations in Hs[J].Nonlinear Anal TMA,1998,31(5/6):573—587. doi: 10.1016/S0362-546X(97)00424-0 [4] Pecher H.Lp-Abschtzungen und klassiche Lsungen für nichtlineare Wellengeichungen[J].I Math Z,1976,150(2):159—183. doi: 10.1007/BF01215233 [5] Kapitanskii L V.Weak and yet weak solutions of semilinear wave equations[J].Comm Partial Diff Equations,1994,19(7):1629—1676. doi: 10.1080/03605309408821067 [6] Pecher H.Nonlinear small data scattering for the wave and Klein-Gordon equations[J].Math Z,1984,185(3):261—270. doi: 10.1007/BF01181697 [7] Pecher H.Low energy scattering for nonlineaar Klein-Gordon equations[J].J Functional Anal,1985,63(1):101—122. doi: 10.1016/0022-1236(85)90100-4 [8] Guenther Ronald B,Lee John W.Partial Differential Equations of Mathematical Physics and Integral Equations[M].New Jersey:Prentice Hall,1988. [9] Kji Kubota.Existence of a global solution to semilinear wave equations with initial data of noncompact support in low space dimensions[J].Hokkaido Math,1993,22(1):123—180.
计量
- 文章访问数: 2706
- HTML全文浏览量: 125
- PDF下载量: 894
- 被引次数: 0