Liquid-Gas Coexistence Equilibrium in a Relaxation Model
-
摘要: 对密闭的一维有限长管道里的等温相变,研究了松弛模型中液气共存平衡态的稳定性.使用匹配渐近展开形式上推出了一阶扰动满足的线性系统.理论分析发现,初始小扰动通常会被耗散掉,然而在一些特殊情况下,它们会维持在一定的水平上.数值计算也表明了松弛机制对相变演化具有稳定作用.Abstract: Stability of liquid-gas coexistence equilibrium in a relaxation model for isothermal phase transition in a sealed one-dimensional tube was discussed.With matched asymptotic expansion,a linear system for first order perturbations was derived formally.By solving this system analytically,it is shown that small initial perturbations are damped out in general;yet they may maintain at certain level for special cases.Numerical evidence is presented.This manifests the regularization effects of relaxation.
-
Key words:
- phase transition /
- relaxation /
- matched asymptotic expansion
-
[1] HSIEH Din-yu,WANG Xiao-ping. Phase transition in Van der Waals fluid[J].SIAM Journal on Applied Mathematics,1997,57(4):871—892. doi: 10.1137/S0036139995295165 [2] Slemrod M. Dynamic phase transitions in a Van der Waals fluid[J].Differential Equations,1984,52:1—23. doi: 10.1016/0022-0396(84)90130-X [3] Zumbrun K. Dynamical[KG*3/4]. stability[KG*3/4]. of[KG*3/4]. phase[KG*3/4]. transitions in the p-system with viscosity-capillarity[J].SIAM Journal on Applied Mathematics,2000,60(6):1913—1924. [4] Fife P, WANG Xiao-ping. Periodic structures in a Van der Waals system[J].Pro Roy Soc Edinburgh Sect A,1998,128:235—250. doi: 10.1017/S0308210500012762 [5] HE Chang-hong,WANG Xiao-ping.Symmetric solutions for a two dimensional Van der Waals system[D].Mphil Thesis. Math Dept HKUST, 1998. [6] FAN Hai-tao.Traveling waves, Riemann problems and computations of the dynamics of liquid/vapor phase transitions[J].Differential Equations,1998,150:385—437. doi: 10.1006/jdeq.1998.3491 [7] CHEN Xin-fu,WANG Xiao-ping.Phase transition near a liquid-gas coexistence equilibrium[J].SIAM Journal on Applied Mathematics,2000,61(2):454—471. doi: 10.1137/S0036139999354285 [8] JIN Sin, XING Zhou-ping.The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J].Communications on Pure and Applied Mathematics,1995,48(3):1—43. [9] Natalini R,TANG Shao-qiang.Discrete kinetic models for dynamical phase transitions[J].Communications on Pure and Applied Analysis,2000,7(2):1—32. [10] TANG Shao-qiang,ZHAO Hui-jiang.Stability of suliciu model for phase transitions[J].Communications on Pure and Applied Analysis,2004,3(4):545—556. doi: 10.3934/cpaa.2004.3.545 [11] TANG Shao-qiang.Patterns in 2-D dynamic phase transitions[A].In:CHIEN Wei-zang Ed.Proceedings of the 4th International Conference on Nonlinear Mechanics[C].Shanghai:Shanghai University Press, 2002, 820—823. [12] HSIEH Ding-yu,TANG Shao-qiang,WANG Xiao-ping.On hydrodynamic instabilities, chaos and phase transition[J].Acta Mechanica Sinica,1996,12(1):1—14. doi: 10.1007/BF02486757
计量
- 文章访问数: 2722
- HTML全文浏览量: 126
- PDF下载量: 557
- 被引次数: 0