留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

测定概率疲劳长裂纹扩展门槛值的新方法

赵永翔 杨冰 梁红琴 邬平波 曾京

赵永翔, 杨冰, 梁红琴, 邬平波, 曾京. 测定概率疲劳长裂纹扩展门槛值的新方法[J]. 应用数学和力学, 2005, 26(6): 701-706.
引用本文: 赵永翔, 杨冰, 梁红琴, 邬平波, 曾京. 测定概率疲劳长裂纹扩展门槛值的新方法[J]. 应用数学和力学, 2005, 26(6): 701-706.
ZHAO Yong-xiang, YANG Bing, LIANG Hong-qin, WU Ping-bo, ZENG Jing. New Method for Measuring the Random Thresholds of Long Fatigue Crack Propagation[J]. Applied Mathematics and Mechanics, 2005, 26(6): 701-706.
Citation: ZHAO Yong-xiang, YANG Bing, LIANG Hong-qin, WU Ping-bo, ZENG Jing. New Method for Measuring the Random Thresholds of Long Fatigue Crack Propagation[J]. Applied Mathematics and Mechanics, 2005, 26(6): 701-706.

测定概率疲劳长裂纹扩展门槛值的新方法

基金项目: 国家自然科学基金资助项目(50375130;50323003);全国优秀博士学位论文作者专项基金资助项目(200234);教育部优秀青年教师资助计划项目(2101)
详细信息
    作者简介:

    赵永翔(1963- ),男,四川金堂人,教授,博士,博导(联系人.Tel:+86-28-87600935;Fax:+86-28-87600868;E-mail:yxzhao@home.swjtu.edu.cn).

  • 中图分类号: O346.2;TB114.3;U270.331

New Method for Measuring the Random Thresholds of Long Fatigue Crack Propagation

  • 摘要: 提出了合理测定随机疲劳长裂纹扩展门槛值的“局部概率Paris关系法”.揭示了常规法不能保证各试样门槛值数据处于相同扩展率水平,测定结果不尽合理的缺陷.以Paris-Erdogan方程描述门槛值附近局部试验数据,考虑数据分散性规律和试样数量两方面的影响,在应力强度因子服从对数正态分布下建立了包含存活概率和置信度的局部概率关系模型,以可接受临界扩展率对应概率因子为依据测定概率门槛值.LZ50钢车轴试验数据分析验证了方法的合理性和有效性.
  • [1] 王孔探,张文毓,秦广义.TA5钛合金的疲劳裂纹扩展门槛值与疲劳裂纹扩展率的关系[J].材料开发与应用,1995,10(3):8—12,19.
    [2] 徐人平,段小建,詹肇麟.理论门槛值的研究[J].强度与环境,1995,22(4):12—16.
    [3] 丁传富,于辉,吴学仁.LY12CZ铝合金的疲劳门槛值及宽范围裂纹扩展速率研究[J].航空材料学报,2000,20(1):12—17.
    [4] 熊峻江,彭俊华,高镇同.断裂韧性KⅠC和断裂门槛值ΔKth可靠性测定方法[J].北京航空航天大学学报,2000,26(6):694—696.
    [5] Clark T R, Herman W A, Hertzberg R W,et al.The influence of the K gradient and Kcmax level on fatigue response during the Kcmax threshold testing of Van 80 steel and Astroloy[J].Internat J Fatigue,1997,19(2):177—182.
    [6] McEvily A J, Renauld M, Bao H,et al. Fatigue fracture-surface roughness and the K-opening level[J].Internat J Fatigue,1997,19(8/9):629—633. doi: 10.1016/S0142-1123(97)00075-3
    [7] Wasén J, Heier E. Fatigue crack growth thresholds—the influence of Young's modulus and fracture surface roughness[J].Internat J Fatigue,1998,20(10):737—742. doi: 10.1016/S0142-1123(98)00034-6
    [8] Lang M. Explanation of an apparent abnormality in fatigue crack growth rate curves in Titanium alloys[J].Acta Mater,1999,47(11):3247—3261. doi: 10.1016/S1359-6454(99)00181-0
    [9] Sivaprasad S, Tarafder S, Tarafder M,et al. An alternative method of decreasing ΔK FCGR testing[J].Internat J Fatigue,2000,22(8):593—600. doi: 10.1016/S0142-1123(00)00029-3
    [10] Meshii T, Watanabe K. Comparison of near threshold fatigue crack growth data by Kmax-constant method with the post-construction codes[J].Nucl Eng Des,2003,220(2):285—292. doi: 10.1016/S0029-5493(02)00387-4
    [11] 赵永翔, 黄郁仲, 高庆. 铁道车辆LZ50车轴钢的概率机械性能[J].交通运输工程学报,2003,3(2):11—17.
    [12] 赵永翔, 王金诺, 高庆. 确定有限疲劳可靠性数据良好假设分布的一种统一方法[J].中国机械工程,2001,12(12):1343—1347.
    [13] Paris P, Erdogan F. A critical analysis of crack growth laws[J].J Basic Eng,1963,85(3):528—534. doi: 10.1115/1.3656900
    [14] 赵永翔,王金诺,高庆.概率循环应力-应变曲线及其估计方法[J].机械工程学报,2000,36(8):102—106.
  • 加载中
计量
  • 文章访问数:  2727
  • HTML全文浏览量:  82
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-05-20
  • 修回日期:  2005-02-21
  • 刊出日期:  2005-06-15

目录

    /

    返回文章
    返回