留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

恒温平行板间多孔介质通道中的分层耗散流动

K·霍曼 M·哥济_邦德培

K·霍曼, M·哥济_邦德培. 恒温平行板间多孔介质通道中的分层耗散流动[J]. 应用数学和力学, 2005, 26(5): 541-546.
引用本文: K·霍曼, M·哥济_邦德培. 恒温平行板间多孔介质通道中的分层耗散流动[J]. 应用数学和力学, 2005, 26(5): 541-546.
Kamel Hooman, Mofid Gorji-Bandpy. Laminar Dissipative Flow in a Porous Channel Bounded by Isothermal Parallel Plates[J]. Applied Mathematics and Mechanics, 2005, 26(5): 541-546.
Citation: Kamel Hooman, Mofid Gorji-Bandpy. Laminar Dissipative Flow in a Porous Channel Bounded by Isothermal Parallel Plates[J]. Applied Mathematics and Mechanics, 2005, 26(5): 541-546.

恒温平行板间多孔介质通道中的分层耗散流动

详细信息
    作者简介:

    K·霍曼(联系人.Tel:+98-111-3234501;Fax:+98-111-3234201;E-mail:k-hooman@tech.umz.ac.ir).

  • 中图分类号: O357.3

Laminar Dissipative Flow in a Porous Channel Bounded by Isothermal Parallel Plates

  • 摘要: 利用Darcy模型,研究了平行板间充填饱和多孔介质的通道中,在热量入口处传热的粘性耗散效应.讨论了等温边界情况.求得热量入口处局部温度和体积计算平均温度随Nusselt数的分布.给出了独立于Brimkman数的经充分发展的Nusselt数应为6A·D2并观察到,若忽略粘性耗散影响,将导致熟知的内流现象,此时Nusselt数等于4.93.还给出了有限差分数值解.结果表明解析法和数值法的结果吻合很好.
  • [1] Nield D A,Bejan A.Convection in Porous Media[M].2nd ed.New York:Springer,1999.
    [2] Nield D A,Kuznetsov A V,Xiong M.Thermally developing forced convection in a porous medium:parallel plate channel or circular tube with walls at constant temperature[J].J Prous Media,2004,7(1):19—27. doi: 10.1615/JPorMedia.v7.i1.30
    [3] Nield D A,Kuznetsov A V,Xiong M.Thermally developing forced convection in a porous medium:parallel plate channel or circular tube with walls at constant heat flux[J].J Porous Media,2003,6(3):203—212. doi: 10.1615/JPorMedia.v6.i3.50
    [4] Nield D A,Kuznetsov A V,Xiong M.Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium[J].Int J Heat Mass Transfer,2002,45(25):4949—4955. doi: 10.1016/S0017-9310(02)00203-X
    [5] Lahjomri J,Oubarra A,Alemany A.Heat trasfer by laminar Hartmann flow in thermal entrance region with a step change in wall temperature:the Graetz problem extended[J].Int J Heat Mass Transfer,2002,45(5):1127—1148. doi: 10.1016/S0017-9310(01)00205-8
    [6] Lahjomri J,Oubarra A.Analytical solution of the Graetz problem with axial conduction[J].ASME J Heat Transfer,1999,121(4):1078—1083. doi: 10.1115/1.2826060
    [7] Narasimhan A,Lage J L.Modified Hazen-Dupuit-Darcy model for forced convection of a fluid with temperature dependent viscosity[J].ASME J Heat Transfer,2001,123(1):31—38. doi: 10.1115/1.1332778
    [8] Kreyszig E.Advanced Engineering Mathematics[M].4th Ed.New York:John Wiley & Sons,1979.
    [9] Shah R K,London A L.Laminar Flow Forced Convection in Ducts(Advances in Heat Transfer,Supplement 1)[M].New York:Academic Press,1978.
    [10] Tannehill J C,Anderson D A,Pletcher R H.Computational Fluid Mechanics and Heat Transfer[M].2nd Ed.Bristol:Taylor & Francis,Inc,1997.
    [11] Nield D A,Kuznetsov A V.Effect of heterorgeneity in forced convection in a porous medium:parallel plate channel or circular duct[J].Int J Heat Mass Transfer,2000,43(22):4119—4134. doi: 10.1016/S0017-9310(00)00025-9
  • 加载中
计量
  • 文章访问数:  2789
  • HTML全文浏览量:  129
  • PDF下载量:  549
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-10-10
  • 修回日期:  2005-02-02
  • 刊出日期:  2005-05-15

目录

    /

    返回文章
    返回