轴对称问题的积分方程的迭代解法
An Iteration Method for Integral Equations Arising from Axisymmetric Loading Problems
-
摘要: 将集度分别为x(ξ)和y(ξ)的集中力和挤压中心沿物体外弹性空间z轴分布,并迭加应力为常数项的解,就能使轴对称应力问题归结为两个联立的一维Fredholm第一种积分方程,本文研究此类方程的迭代解法.给出与E.Rakotch收缩映射定理等价的引理和迭代收敛证明.Abstract: Let the concentrated forces and the centers of pressure with unknown density functions x(ξ) and y(ξ) respectively be distributed along the axis z outside the solid, then one can reduce an axismmetric loading problem of solids of revolution to two simultaneous Fredholm integral equations. An iteration method for solving such equations is duscussed. A lemma equivalent to E. Rakotch's contractive mapping theorem and a theorem concerning the convergent proof of the iteration method are presented.
-
[1] 钱伟长,叶开沅著,《弹性力学》,科学出版社,北京.(ISS6) [2] Mindlin,R.D.,Force at a point in the interior of a semi-infinite solid,J,physics,77.May(1936),195. [3] Banerjee,P.K.,Integral equation methods for analysis of piece-wise non-homogeneous threedimensional elastic solids of arbitrary shape.Int.J.Mech,Sci 18,(1976),293-303. [4] Srinivasa Swaminathan,Fixed point Theory and its Applications,Academic press,(1976),198. [5] 云天性,Fredliolm第一种积分方程Ax=y的最速选代解法,《华中工学院学报》,(1978).第3期,94-93. [6] Franklin,J.L.,Minimum principles for ill-posed problems,SIAM J.Math.Anal.,Vol.9,No.4,Aug(1978).639-651. [7] Delves.L.M.and Walsh.J.,Numerical Solution of integral equations,Clarendon press,(1974).175-185.
计量
- 文章访问数: 1913
- HTML全文浏览量: 107
- PDF下载量: 618
- 被引次数: 0