水动力-热动力学的极值定律
The Extremity Laws of Hydro-Thermodynamics
-
摘要: 本文对水动力学和更普通性的连续介体动力学中以连续方程与运动方程所表达的现有诸经典守恒定律以外,提出另一最大能量消散率定律.这一定律的推论就是应用水力学中培纶格-波丝最小储存能学说. 凡在运动中消散了的机械能皆转化成为热能,储存在物体里.能量之消散当一定时刻一定温度都使产熵增加.所以,从最大能量消散率可引出热力学第二定律的一个新概念,即机械运动的产熵率也总是一个可能的最大值. 文中建议的这个连续介体极值定律,可从变分原理推导出来,重订热力学第二定律则可藉微观分析加以证明.两者合成水动力-热动力学极值定律Abstract: This paper presents the law of maximum rate of energy dissipation in hydrodynamics and also in general continuum dynamics as an addition to the classical conservation laws expressed in the equation of continuity and the equations of motion. The corollary of the law is Belanger-Boss theorem of minimum reserved specific energy in applied hydraulics.The mechanical energy dissipated is transformed into heat reserved in the substance. The rate of energy dissipation at a time at a given temperature gives rise to the increase in entropy production. Hence the maximum rate of energy dissipation suggests itself the idea of reformulation of the second law of thermodynamics that the rate of entropy production in mechanical motion is always the maximum possible.The proposed extremity law in continuum dynamics has been derived from the variational principle and the reformulated second law of thermodynamics analyzed microscopically in the paper. The two laws together form the extremity laws of hydro-thermodynamics.
-
[1] Böss,P.,Berechnung der Wasselspiegellange beim Wechsel des Fliessjustandes,Springer,Berling,(1919),20,52. [2] Belanger,J.B.,Essai sur la solution numerique de quelques probleme relatifs au mouvement permanent des eaux courantes,(1928). [3] Jaeger,Charles Engineering Fluid Mechanics,(1949). [4] 黄万里,连续介体动力学最大能量消散定律,清华大学学报,21,1,87-96. [5] wisniewski,s.et al.,Thermodynamics of Non-equilibrium Processes,(1976),22,2. [6] Prigogine,I.,Microscopic Aspects of Entropy in Foundations of Continuum Thermodynamics,edited by Dominos et al.,(1973),106. [7] Woods,L.C.,Thermodynamics of Fluid Systems,(1975),68.
计量
- 文章访问数: 1863
- HTML全文浏览量: 81
- PDF下载量: 766
- 被引次数: 0