Nontrivial Equilibrium Solutions for a Semilinear Reaction-Diffusion System
-
摘要: 利用正锥上的度理论,结合精细的先验估计技巧,讨论了一类强非线性弱耦合的反应扩散方程组,得到了其非平凡平衡解的存在性以及解的结构.
-
关键词:
- 半线性反应扩散方程组 /
- 平衡解 /
- 先验估计
Abstract: By the degree theory on positive cone together with the technique of a priori estimate,the nontrivial equilibrium solutions of a strong nonlinearity and weak coupling reaction diffusion system and the structure of the equilibrium solutions are discussed. -
[1] Lions P L.On the existence of positive solutions of semilinear elliptic equations[J].SIAM Review,1982,24(2):441—467. doi: 10.1137/1024101 [2] De Figueiredo D G,Lions P L,Nussbaum R D.A priori estimates and existence of positive solutions of semilinear elliptic equations[J].J Math Pures Appl,1982,61(1):41—63. [3] Clément Ph,Figueiredo D G,Mitidieri E.Positive solutions of semilinear elliptic systems[J].Comm Partial Differential Equations,1992,17(5):923—940. doi: 10.1080/03605309208820869 [4] Gidas B,Spruck J.A priori bounds for positives of nonlinear elliptic equations[J].Comm Partial Differential Equations,1981,6(4):883—901. doi: 10.1080/03605308108820196 [5] Gu Y G,Liu T.A priori estimate and existence of positive solutions of semilinear elliptic equation with the third boundary value problem[J].J Systems Sci Comploxity,2001,14(4):388—398. [6] Troy W C.Symmetry properties in systems of semilinear elliptic equations[J].J Differential Equations,1981,42(3):400—413. doi: 10.1016/0022-0396(81)90113-3 [7] Gilbarg D,Trudinger N S.Elliptic Partial Differential Equations of Second Order[M].New York:Springer-Verlag,1977. [8] Ladyzhenskaya O,Uraltseva N.Linear and Quasilinear Elliptic Equations[M].Scripta Technica Transl.New York: Academic Press,1968.(English version)
计量
- 文章访问数: 2809
- HTML全文浏览量: 114
- PDF下载量: 824
- 被引次数: 0