留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用切向力法寻求绕铅垂轴旋转导轨上滑动质点的奇异点及其稳条件

刘先志

刘先志. 用切向力法寻求绕铅垂轴旋转导轨上滑动质点的奇异点及其稳条件[J]. 应用数学和力学, 1983, 4(1): 1-40.
引用本文: 刘先志. 用切向力法寻求绕铅垂轴旋转导轨上滑动质点的奇异点及其稳条件[J]. 应用数学和力学, 1983, 4(1): 1-40.
Liu Hsien-chih. Using Tangential Force Method to Detect the Singular Points and to Discriminate Their Stability Conditions of a Movable Mass Point on any Guide Curve Rotating about a Vertical Axis without Friction[J]. Applied Mathematics and Mechanics, 1983, 4(1): 1-40.
Citation: Liu Hsien-chih. Using Tangential Force Method to Detect the Singular Points and to Discriminate Their Stability Conditions of a Movable Mass Point on any Guide Curve Rotating about a Vertical Axis without Friction[J]. Applied Mathematics and Mechanics, 1983, 4(1): 1-40.

用切向力法寻求绕铅垂轴旋转导轨上滑动质点的奇异点及其稳条件

Using Tangential Force Method to Detect the Singular Points and to Discriminate Their Stability Conditions of a Movable Mass Point on any Guide Curve Rotating about a Vertical Axis without Friction

  • 摘要: 迄今一般都用态平面法来寻求绕铅垂轴旋转导轨上滑动质点的奇异点的位置.为同一目的,本文提出了一个新方法,可称为切向力法.与态平面法相比,切向力法在思考和计算两方面都比较简便,尤其当我们应用本文第八节所建立的五个判据为甚. 本文曾在一些有关公式中引进了描述导轨的一般表达函数,俾使求解这类问题时,避免了每次重新进行推导,而能迳把导轨函数代进这些建立的公式.通过建立切向力法,又自切向力等于零和法向力等于零这两个条件得出该两微分方程的解:抛物线导轨和对数线导轨这两条特徵导轨曲线;它们是两族互相正交但非共轭调和函数曲线. 文末曾拟取了九种不同安排的旋转导轨,并先后分别用态平面法,势函数法和切向力法进行了解析.这九种导轨中有七种安排是本文新提出来求解的,它们在以前的篇藉中,作者尚未见到.
  • [1] Butenin,N.V.,Elements of the Theory of Nonlinear Oscillations,New York,London(1966).
    [2] Lorenz,H.,Tecbnische Mechnik Starrer Gebilde,Julius Springer,(1924).
    [3] Бабаков,И.М.,Теорuя Колебанuu,Москва,(1958)
    [4] Kauderer,H.,Nichtlineare Mechanik,Berlin(1958).
    [5] Андрооов,А.А.,А.А.Витт и С.З.Хайкин,теорuя Колебанuu,Москва,(1959)
    [6] Pöschl,Th.,Lehrbuch der Technischen Mechik,Springer(1930).
    [7] Stoker,J.J.,Nonlinear Vibrations in Mechanical and Electrical Systems,New York,London(1950).
    [8] Wittenbauer,F.and Th.Pöschl,Aufgablen aus der Technischen Mechnik,1,Teil,Springer-Verlag,Berlin,(1931).
    [9] Hamel,G.,Theoretische Mechnik,Berlin/Gottingen/Heidelber,(1958).
    [10] Prasil,F.,Technishe Hydrodynamik,Springer Verlag(1926).
    [11] Schuler,M.,Eonfuhrung in die Mechnik,Wolfenbuttel(1950).
    [12] Andronow,A.A.and C.E.Chaikin,Theory of Oscillations Princeton University Press,(1949).
    [13] "Hütte"des Ingenieurs Taschenbuch,Verlag von Wilhelm Ernst and Sohn,Berlin(1931).
  • 加载中
计量
  • 文章访问数:  1604
  • HTML全文浏览量:  62
  • PDF下载量:  493
  • 被引次数: 0
出版历程
  • 收稿日期:  1981-03-20
  • 刊出日期:  1983-02-15

目录

    /

    返回文章
    返回