留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散型固体力学及其间断型变分原理

牛庠均

牛庠均. 离散型固体力学及其间断型变分原理[J]. 应用数学和力学, 1983, 4(3): 427-438.
引用本文: 牛庠均. 离散型固体力学及其间断型变分原理[J]. 应用数学和力学, 1983, 4(3): 427-438.
Niu Xiang-jun. Solid Mechanics of Discrete Form and the Variational Principles of the Discontinuous Form[J]. Applied Mathematics and Mechanics, 1983, 4(3): 427-438.
Citation: Niu Xiang-jun. Solid Mechanics of Discrete Form and the Variational Principles of the Discontinuous Form[J]. Applied Mathematics and Mechanics, 1983, 4(3): 427-438.

离散型固体力学及其间断型变分原理

Solid Mechanics of Discrete Form and the Variational Principles of the Discontinuous Form

  • 摘要: 本文对即将形成的一门新的学科——离散型固体力学的基本假设,微分形式的方程,及其间断型变分原理进行了论述.离散型固体力学是离散介质力学的一个分支,是近期以来力学的一个发展方向.它是基于固体体系具有离散性、可分性,待解函数在定义城内具有各种不同的间断性,以及定义域的边界可动性的基础上,为解决种种情况下的固体的应力,位移、应变所形成的力学系统.当待解函数在整个定义域内为充分光滑的函数类和略去边界可动性的影响时,则离散型固体力学就退化为连续介质力学范畴的古典固体力学.它所属的变分原理,在相应的情况下,也就退化为古典与非占典变分原理.
  • [1] 陈宗基,力学的强大生命力在于它的创造性,光明日报(1978. 11, 10).
    [2] 牛摩均,固体的离散型变分原理——有限元离散分析的变分原理,应用数学和力学,2.5(1981).
    [3] 冯康,基于变分原理的差分格式,应用数学与计算数学,2, 4(1965)
    [4] 钱伟长,《变分法及有限元》上册,科学出版社(1980).
    [5] Pian,T.H.H.and P.Tong,Basis of finite element method for solid continua,International Journal for Numerical Methods in Engineering,Vol.1,(1969).
    [6] Prager,W.,Variational principle of linear elastostatics for discontinuous displacements,strains and stresses,Recent Progress in Applied Mechanics,(1967).
    [7] Courant,R,and D.Hilbert,《数学物理方法》(中译本),科学出版社,(1958).
  • 加载中
计量
  • 文章访问数:  1789
  • HTML全文浏览量:  97
  • PDF下载量:  510
  • 被引次数: 0
出版历程
  • 收稿日期:  1982-02-28
  • 刊出日期:  1983-06-15

目录

    /

    返回文章
    返回