加筋板大变形的混合有限元解法
Large Deformation Solution of Stiffened Plates by a Mixed Finite Element Method
-
摘要: 本文由非线性弹性力学导出带偏心正交加筋板大变形有限元混合泛函及其迭代方程.在计算中运用一个将二维耦合矩阵分解、求出三维系数矩阵作为原始输入数据的重要技巧,把非线性方程转化为瞬态线性方程.并用共轭斜量法求解,从而极大地简化了计算,提高了精度,取得了满意的结果.Abstract: In the present paper, a finite element mined variational functional and the iterative equations of the eccentric orthogonal stiffened plates are developed in accordance with nonlinear elasticity. By using an important technique the coupling coefficients of the two dimensional coupling matrix are resolved into the known input data in the programming which is a three-dimensional coefficient matrix. The nonlinear equations are transformed into the instantaneous linear equations. The linear equations are solved by using the conjugate gradient method, As a result therefore, the calculation is simplified enormously, the precision is improved. and a satisfactory result is obtained.
-
[1] Murray,D,W,and E,L,Wilson,Finite element large deflection analysis of plates,J.Struct,Div,ASCE,95(1969). [2] Walter,E,Haisler,Development and evaluation of solution procedures for geometrically nonlinear structural by the direct stiffness method,AIAA J.,4(1971),1-13 [3] Foz,R.L.,Development in structural analysis by direct energy minimization.AIAA J.,6,6(1968). [4] 刘正兴、冯太华、李定夏.用有限元法解加筋板壳的几何非线性问题.南京航空学院学报.5(1979). [5] 常福忠、刘玉兰等,加筋板大变形及过屈曲的有限元分析.科技资料.第三机械工业部第六○五所编.1(1980). [6] B.B.诺沃日洛夫,《非线性弹性理论》,朱兆祥译(1953). [7] Gass,N.and B.Tabarrok,Large deformation analysis of plates and cylindrical shells by a mixed finite element method,Iut.J.Num,Mesh,Eng.,10,711-746. [8] 陈远汉,一种快速收敛12自由度板弯曲矩形拟协调元.1981年中国科学技术大学研究生毕业论文. [9] 冯康.《数值计算方法》.国防工业出版社,(1978). [10] Washizu,K.,Yariatiorral Methods in Elasticity and Plasticity,Pergamon Press,(1968),164. [11] A C.沃耳密尔.《柔韧板与柔韧壳》.科学出版社.(1963). [12] S.铁木辛柯.《板壳理论》.科学出版社,1977年10月第一版.
计量
- 文章访问数: 1692
- HTML全文浏览量: 75
- PDF下载量: 634
- 被引次数: 0