留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

奇摄动半线性系统的边界层和角层性质

章国华 刘光旭

章国华, 刘光旭. 奇摄动半线性系统的边界层和角层性质[J]. 应用数学和力学, 1984, 5(3): 337-344.
引用本文: 章国华, 刘光旭. 奇摄动半线性系统的边界层和角层性质[J]. 应用数学和力学, 1984, 5(3): 337-344.
K. W. Chang, G. X. Liu. Boundary and Angular Layer Behavior in Singularly Perturbed Semilinear Systems[J]. Applied Mathematics and Mechanics, 1984, 5(3): 337-344.
Citation: K. W. Chang, G. X. Liu. Boundary and Angular Layer Behavior in Singularly Perturbed Semilinear Systems[J]. Applied Mathematics and Mechanics, 1984, 5(3): 337-344.

奇摄动半线性系统的边界层和角层性质

Boundary and Angular Layer Behavior in Singularly Perturbed Semilinear Systems

  • 摘要: 一些作者已对纯量边值问题εy"=h(t,y),a+时其解的存在性和渐近性质.本文是在退化方程0=h(t,u)的解u=u(t)假定具有类似稳定性的条件下,将上述的研究推广到向量边值问题.退化解u(t)在(a,b)内是否有连续的一阶导数,将决定向量边值问题的渐近性质的类型,即出现边界层现象和角层现象.
  • [1] (1) Brish,N.I.,On Boundary Value Problems for the Equation εyn=f(x,y,Y') for small ε,Dokl.Akad.Nauk SSSR 95(1954),429-432.
    [2] (2) Hebets,P.and M.Laloy,Etude de probl鑝es aux limit閟 par la m鑤hode des surer sous-solutions,Lecture notes,Catholic University of Louvain,Belgium (1974).
    [3] (3) Bernfeld,S.and V.Lakshmikantham,An Introduction to Nonlinear Boundary Value Problems,Academic Press,New York,(1974).
    [4] (4) Boglaev,Yu.B.,The two-point problem for a class of ordinary differential equations with a small parameter coefficient of the derivative,USST Comp.Math.and Math.Phys.10 (1970),4,191-204.
    [5] (5) Chang,K.W.and F.A.Howes,Nonlinear Singular Perturbation Phenomena,Springer-Verlag Pub.(in press).
    [6] (6) O'Donnell,M.A.,Boundary and Corner Layer Behavior in Singularly Perturbed Semilinear Systems of Boundary Value Problems,SIAM J.Math.Anal.(to be published).
  • 加载中
计量
  • 文章访问数:  1819
  • HTML全文浏览量:  78
  • PDF下载量:  473
  • 被引次数: 0
出版历程
  • 收稿日期:  1983-07-07
  • 刊出日期:  1984-06-15

目录

    /

    返回文章
    返回