留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用力学子单元模型求解与时间有关的各向异性塑性问题

卞学鐄

卞学鐄. 用力学子单元模型求解与时间有关的各向异性塑性问题[J]. 应用数学和力学, 1984, 5(4): 461-470.
引用本文: 卞学鐄. 用力学子单元模型求解与时间有关的各向异性塑性问题[J]. 应用数学和力学, 1984, 5(4): 461-470.
Theodore H. H. Pian. Time-Independent Anisotropic Plastic Behavior by Mechanical Subelement Models[J]. Applied Mathematics and Mechanics, 1984, 5(4): 461-470.
Citation: Theodore H. H. Pian. Time-Independent Anisotropic Plastic Behavior by Mechanical Subelement Models[J]. Applied Mathematics and Mechanics, 1984, 5(4): 461-470.

用力学子单元模型求解与时间有关的各向异性塑性问题

Time-Independent Anisotropic Plastic Behavior by Mechanical Subelement Models

  • 摘要: 本文介绍了用力学子单元模型摹拟金属各向异性弹-塑性平面应力行为的做法,模型引用的纵向与横向应力-应变曲线,是用几个光滑的短线段来表达的;但为简化起见,把它们当作分段线性线段。模型已纳入粘塑性杂交应力有限元分析程序。
  • [1] Duwez, P., On the plasticity of crystals, Physical Review, 47,(1935), 494-501.
    [2] Besseling, J. F., A Theory of Plastic-flow for Anisotropic Hardening in Plastic Deformation of an Initially Isotropic Material, Nat. Aero Research Inst. Rept. S410, Amsterdam,(1953).
    [3] Leech, J. W., E. A. Witmer and T. H. H. Pian, Numerical calculation technique for large elastic-plastic transient deformations of thin shells, AIAA Journal 6,(1968), 2352-2359.
    [4] Zienkiewicz, O. Z., G. C. Nayak and D. R. J. Owen, Composite and Overlay Models in Numerical Analysis of Elastic-Plastic Continua, Foundations of Plasticity, A. Sawszuk ed. Noordhoff, Leyden,(1973), 107-123.
    [5] Hunsaker, B., W. E. Haisler and J. A. Stricklin, On the use of two hardening rules of plasticity in incremental and pseudo force analyses, Constitutive equation's in viscoplasticity: Computational and engineering aspect,ASME-VOL. 20,(1973), 139-170.
    [6] Plan, T. H. H., Unpublished Lecture Notes on Plasticity,(1966).
    [7] Perzyna, P., Fundamental Problems in Viscoplasticity, Advances in Applied Mechanics, Academic Press, New York, Vol. 9,(1966), 243-377.
    [8] Plan, T. H. H., Nonlinear creep analysis by assumed stress finite element methods, AIAA Journal, Vol. 12,(1975), 1756-1758.
    [9] Pian, T. H. H. and S. W. Lee, Creep and Viscoplastic Analysis by Assumed Stress Hybrid Finite Elements, Finite Elements in Nonlinear Solid and Structural Mechanics, Ed. by P. G. Bergan et al. Tapir Publisher, Trondheim, Norway,(1978), 807-822.
    [10] Cormeau, I. C., Numerical stability in quasi-state elasto/viscoplasticity, Int. J. Num. Meth. Engng., 9,(1975), 109-127.
    [11] Percy, J. H., W. A. Loden and D. R. Navaratna, A Study of Matrix Analysis Methods for Inelastic structures, Air Force Dynamics Laboratory Report, RTDTDA-63-4032, Oct.(1963).
    [12] Jensen, W. R., W. E. Falby and N. Prince, Matrix Analysis Methods for An tropic Inelastic Structures, Air Force Flight Dynamics Lab. Report AFFDL-TR-65-220, April,(1966).
  • 加载中
计量
  • 文章访问数:  1652
  • HTML全文浏览量:  100
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  1983-05-19
  • 刊出日期:  1984-08-15

目录

    /

    返回文章
    返回