Semi-Weight Function Method on Computation of Stress Intensity Factors in Dissimilar Materials
-
摘要: 应用半权函数法求解双材料界面裂纹的平面问题.由平衡方程、应力应变关系、界面的连续条件以及裂纹面零应力条件推导出裂尖的位移和应力场,其特征值为lambda及其共轭.设置特征值为lambda的虚拟位移和应力场,即界面裂纹的半权函数A·D2由功的互等定理得到应力强度因子KⅠ和KⅡ以半权函数与绕裂尖围道上参考位移和应力积分关系的表达式.数值算例体现了半权函数法精度可靠、计算简便的特点.Abstract: Semi-weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi-weight functions were obtained as virtual displacement and stress fields with eigenvalue-lambda. Integral expression of fracture parameters, KⅠ and KⅡ, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi-weight function method is a simple, convenient and high precision calculation method.
-
[1] Williams M L.The stresses around a fault or crack in dissimilar media[J].Bull Seismol Soc Amer,1959,49(2):199—204. [2] Rice J R, Sih G C.Plane problems of cracks in dissimilar media[J].J Appl Mech, Trans ASME, Ser E,1965,32:418—423. doi: 10.1115/1.3625816 [3] Bueckner H F.Mechanics of Fracture 1[M].Chapter S,Sih G C Ed.Dordrecht: Martinus Nijhoff Publishers, 1973. [4] Gao H. Weight function method for interface crack in anisotropic bimaterials[J].Internat J Fracture,1992,55(2):139—158. [5] Banks-Sills L. Weight functions for interface cracks[J].Int J Fracture,1993,60(1): 89—95. doi: 10.1007/BF00034514 [6] 申连喜,余寿文.界面裂纹问题中的权函数方法[J].固体力学学报,1995,16(2):171—174. [7] LIU Chun-tu, ZHANG Duan-zhong. Semi-weight function method in fracture mechanics[J].Internat J Fracture,1991,48:R3—R8. doi: 10.1007/BF00012505 [8] HONG Chen-chin,Morris Stern. The computation of stress intensity factors in dissimilar materials[J].J Elasticity,1978,8(1):21—34. doi: 10.1007/BF00044508 [9] 龙驭球.新型有限元引论[M].北京:清华大学出版社, 1992. [10] 杨晓翔, 匡震邦. 求解界面裂纹应力强度因子的围线积分法[J].上海力学,1996,17(1):10—21. [11] 黎在良,王元汉,李廷芥.断裂力学中的边界数值方法[M].北京:地震出版社, 1996.
计量
- 文章访问数: 2571
- HTML全文浏览量: 158
- PDF下载量: 814
- 被引次数: 0