留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同模量横力弯曲梁的解析解

姚文娟 叶志明

姚文娟, 叶志明. 不同模量横力弯曲梁的解析解[J]. 应用数学和力学, 2004, 25(10): 1014-1022.
引用本文: 姚文娟, 叶志明. 不同模量横力弯曲梁的解析解[J]. 应用数学和力学, 2004, 25(10): 1014-1022.
YAO Wen-juan, YE Zhi-ming. Analytical Solution for Bending Beam Subject to Lateral Force With Different Modulus[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1014-1022.
Citation: YAO Wen-juan, YE Zhi-ming. Analytical Solution for Bending Beam Subject to Lateral Force With Different Modulus[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1014-1022.

不同模量横力弯曲梁的解析解

详细信息
    作者简介:

    姚文娟(1957- ),女,江西南昌人,副教授,博士(联系人.Tel:+86-21-66305773;Fax:+86-21-56337100;E-mail:wjyao@staff.shu.edu.cn)

  • 中图分类号: O343.5

Analytical Solution for Bending Beam Subject to Lateral Force With Different Modulus

  • 摘要: 选择处于平面复杂应力状态下横力弯曲梁,对结构进行了中性层的判定,推导出中性轴、正应力、剪应力、位移的计算公式,得到如下结论:对于复杂应力状态下的不同模量弹性弯曲梁,其中性轴位置与剪应力无关,因此用正应力作为判据而得到解析解,改进了以往用主应力判定中性点的多次循环的计算方法.把解析解的结果与经典力学同模量理论,以及有限元数值解进行了比较,结果表明:解析解很好地考虑了拉压不同模量的效应.还提出了对不同模量结构的计算修正以及对结构优化的思想.
  • [1] Medri G. A nonlinear elastic model for isotropic materials with different behavior in tension and compression[J].Transactions of the ASME,1982,26(104):26—28.
    [2] Амбарцумян С А.不同模量弹性理论[M].邬瑞锋,张允真 译.北京:中国铁道出版社,1986.
    [3] Srinivasan R S , Ramachandra L S.Large deflection analysis of bimodulus annular and circular plates using finite elements[J].Computers & Structures, 1989,31(5):681—691.
    [4] Srinivasan R S, Ramachandra L S. Axisymmetric buckling and post-bucking of bimodulus annular plates[J].Eng Struct,1989,11(7):195—198. doi: 10.1016/0141-0296(89)90007-2
    [5] 张允真,王志锋,不同模量弹性力学问题的有限元法[J].计算结构力学及其应用,1989,6(1):236—246.
    [6] Papazoglou J L, Tsouvalis N G, Mechanical behaviour of bimodulus laminated plates[J].Composite Structures,1991,17(1):1—22.
    [7] 杨海天,邬瑞锋,杨克检,等.初应力法解拉压双弹性模量问题[J].大连理工大学学报,1992,32(1):35—39.
    [8] TSENG Yi-ping,LEE Cheng-tao. Bending analysis of bimodular laminates using a higher-order finite strip method[J].Composite Structures,1995,30(4):341—350. doi: 10.1016/0263-8223(94)00048-4
    [9] YE Zhi-ming.A new finite element formulation for planar elastic deformation[J].Internat J for Numerical Methods in Engineering,1997,14(40):2579—2592.
    [10] TSENG Yi-ping,JIANG Yu-ching. Stress analysis of bimodular laminates using hybrid stress plate elements[J].International Journal of Solids Structures,1998,35(17):2025—2028. doi: 10.1016/S0020-7683(97)00170-4
    [11] YE Zhi-ming,YU Huang-ran,YAO Wen-juan.A finite element formulation for different Young's modulus when tension and compression loading[A].In:Jin Ho Kwak Ed.Com2Mac Conference on Computational Mathematics[C].South Korea: Pohang University of Science and Technology,2001,2—5.
    [12] Raffaele Zinno, Fabrizio Greco.Damage evolution in bimodular laminated composites[J].Composite Structures,2001,53(4):381—402. doi: 10.1016/S0263-8223(01)00048-4
    [13] Gao X -L,Li K,Mall S.A mechanics-of-materials model for predicting Young's modulus of damaged woven fabric composites involving three damage modes[J].International Journal of Solids and Structures,2003,40(4):981—999. doi: 10.1016/S0020-7683(02)00603-0
    [14] 姚文娟,叶志明.不同模量弯压柱的解析解[J].应用数学和力学,2004,[STHZ]. 25[STBZ]. (9):901—909.
  • 加载中
计量
  • 文章访问数:  2823
  • HTML全文浏览量:  167
  • PDF下载量:  670
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-03-06
  • 修回日期:  2004-05-31
  • 刊出日期:  2004-10-15

目录

    /

    返回文章
    返回