对应不同类型变分原理的旋转薄壳轴对称单元
Axisymmetrical Elements of Thin Shell of Revolution Corresponding to Different Types of Variational Principles
-
摘要: 本文在一定范围内,统一考察基于不同变分原理建立的有限元模型中,泛函约束条件的不同对单元性态的影响.文中以旋转薄壳轴对称单元(简称TSR单元)为例,采用相同的曲边单元几何描述,推导了七种TSR杂交单元和二种TSR位移协调元,它们分别对应于三类杂交变分原理及最小势能原理.通过单刚列式分析和波纹壳等数值算例比较,分析了不同模型的性态异同和应用上的适应性与局限性;讨论了两类模型间的相互关系;指出了TSR杂交位移元的—个发散条件,并推荐了二种性态较理想的TSR单元.Abstract: The purpose of this paper is to investigate, to some extent, the influnce of variational constraints on the finite element properties, which are based on different types of variational principles. Taking axisymmetrical elements of thin shell of revolution(abbreviated as TSR element) as comparative elements, and with the same geometrical description, we derive seven kinds of TSR hybrid elements and two kinds of TSR conforming elements corresponding to three types of hybrid variational principles and potential energy principle respectively. By analysing the element stiffness formulations and comparing the numerical calculations, such as corrugated shell, we discuss the differences in properties of different models, and the adaptability, limitation as well as relationship between two types of models. We also point out a divergence case of TSR hybrid displacement element, and suggest two kinds of more acceptable TSR elements.
-
[1] Jonse,R,E,,A generaliaation of the direct-tiffness method of structural analysis,AIAA,2,5(1964),821-826. [2] Pian,T,H,H,,Derivation of element stiffness matrices by assumed stress distribution AIAA,2(1964),1333-1336. [3] Tong,P,,New displacement hybrid finite element model for solid continua,Int,J.Num,Meth,Eng,2(1970),78-83. [4] Atluri,S A new assumed stress hybrid finite element model for solid continua,AIAA,9,8(1971),1647-1649. [5] Wolf,J,P,,Generalized hybrid stress finite-element model,AIAA,11,3(1973),380-387. [6] 唐立民,有限元法中的若干问题,大连工学院学报,2(1979). [7] 陈万吉,广义杂交元,力学学报,6(1981),582-591. [8] 钱伟长,高阶拉氏乘子和弹性力学中更一般的变分原理,应用数学和力学,4.2(1983),137-150. [9] Day,M,L,and T,Y,Y,Yang,A mixed variational principle for finite element analysis,Int,J.Num,Mech,Eng,18,8(1982)1213-1230. [10] 陈万吉,更一般的杂交广义变分原理及有限元模型,应用数学和力学,7,5(1980): [11] 徐芝纶,《弹性力学》下册,人民教育出版社,212-230. [12] Jonse,R,E,and D,R,Strome,Derict stiffness,method pf analysis of shells,of.revolution utilizing curved element,AIAA,4,9(1966)1519-1525. [13] Cook,R,D,,《有限元分析的概念和应用》,科学出版社(1974),189-190. [14] 张社光,大连工学院硕士学位论文.(1984) [15] 谢志成、付承诵、郑思梁,有曲率突变的轴对称壳(波纹壳)的有限元解,应用数学和力学,2,1(1981),113-l30.
计量
- 文章访问数: 1868
- HTML全文浏览量: 91
- PDF下载量: 570
- 被引次数: 0