包括激发和衰减的粘弹性Ⅱ型破裂过程的研究
Research of Visco-Elastic Type Ⅱ Rupture with Exciting and Attenuation Process
-
摘要: 用非线性Rayleigh阻尼公式描述初始破裂时有激发而加速,至一定高速时有衰减而止裂。视介质为匀质各向同性的Voigt线性粘弹性体,用小参数摄动法把滑开型(Ⅱ型)破裂定义的非线性偏微分方程组线性化,得出各次逼近解所定义的线性方程组,再用动坐标表示的广义Fourier级数把问题简化为非齐次的Mathieu方程,用WKBJ法给出问题在稳定区域的渐近解。Abstract: With non-linear Rayleigh damping formula we describe the exciting process when the rupture velocity is low and the attenuation process w hen the rupture velocity reaches a certain high value, Assuming the medium of the earth crust is homogeneous and isotropic linear Voigt visco-elastic body,with small parameter perturbation method to deduce the non-linear governing partial differential equations into a system of asymptotic linear ones,we solve them by means of generalized Fourier series with moving coordinates as its variables,thus we transform them into non-homogeneous Mathieu equations. At last Mathieu equations are solved by WKBJ method.
-
[1] 范家参,徐平,有激发和衰减的有限长裂缝I型破裂过程研究,应用数学和力学,3, 5 (1982). [2] 范家参,地震破裂过程中不可能存在塑性变形,地震研究,6(增刊)(1983). [3] 钱伟长,柱形弹体撞击塑性变形的G, I.泰勒理论分析解及其改进,应用数学和力学,3,6(1982). [4] N. H瑞克,《粘弹性介质中的地震波》,许云泽,地质出版社(19x1). [5] Goldsmith,W.,et al.,Stress waves in anelastic solids, Some Dynamic Characteristics of Rocks, IUTAM Symposium,.Providence (1963),277-303. [6] England, Philip, et al.,A thin viscous sheet model for continental deformation,Geophys, J.,RAS (London),70, 2 (1982),295-322. [7] Kusznir, N, J,Lithosphere response to externally and internally derived stress; a viscoelastic stress guide with amplification, ibid, (1982),399-414. [8] Wu, Patrick, et al,Viscous gravitational relaxation, ibid, (1982),435-486. [9] 王竹溪等,K特殊函数概论,科学出版社(1985), 692, 711-712. [10] Arscott, F, M,Periodic Differential Equdtions, Pergammon Press (1964),139. [11] 谭忠棠,偶应力的弹性理论,固体力学学报,4(增刊)(1982). [12] Kim, K S.,Dynamic propagation of a finite crack,Int.J.Solids and Structure, 15,9 (1979)685-699.
计量
- 文章访问数: 1578
- HTML全文浏览量: 58
- PDF下载量: 616
- 被引次数: 0