非线性系统周期解不动点迭代法
Stationary Points Iteration Method for Periodic Solution to Nonlinear System
-
摘要: 本文提出一种求解非线性系统周期解的数值方法。首先对非线性自治系统和非自治系统给出不同的点映射定义。其次指出用线性映射逼近原非线性映射,而线性映射是由非线性映射插值获得的。继而求取线性映射的不动点,作为原系统不动点的近似解。如不满足精度则作为下次映射的初始点。本文还提出了研究周期解稳定性的相应方法。Abstract: The value method which is used to obtain the periodic solution to nonlinear system is mentioned in this article. Different point reflection is defined in the nonlinear autonomous and nonautonomous system firstly and then that linear reflection obtained from the inserting value of nonlinear reflection is asymptotic to original nonlinear reflection. The stationary points obtained by linear reflection are regarded as the asymptotic solution of the stationary points of original system. If this asymptotic solution of the stationary points is not satisfactorily accurate it can be used as the initial point of the next reflection. In addition,a corresponding method of researching the stability of periodic solution is put forward in this article.
-
[1] 凌复华,非线线振功周期解的数值分析,应用数学和力学,4, 4 (1983), 489-506. [2] 凌复华等,非线性振动论文选,全国第三届非线性振动学术交流会资料,(1983, 10). [3] 古屋茂、南云仁一,《非线型振动论》,(1957). [4] 秦元熟,《微分方程定义下的积分曲线》,(1959). [5] 安德罗诺夫 A.A.,A.A. 维特,C.E.依哈金,《振动理论》,科学出版让(1974), 304-314, 497-507. [6] 闫国奎、刘铁牛,非线性自治系统周期解的数值分析,大连工学院工程力学系学士论文(1984). [7] 王平、刘铁牛,非线性自冶系统周期解的数值分析,大连上学院工程力学系学士论文(1984).
计量
- 文章访问数: 1818
- HTML全文浏览量: 96
- PDF下载量: 548
- 被引次数: 0