复特征值的一阶摄动解
First-Order Perturbation Solution to the Complex Eigenvalues
-
摘要: 本文将矩阵摄动法,推广到系统质量、阻尼和刚度矩阵为非对称的情形,引入伴随特征向量的概念,应用复模态理论中的正交关系,导出了系统复特征值的一阶摄动解。数值算例表明,这一方法是可行有效的。Abstract: The matrix perturbation method is extended to discrete linear nonconservative system with unsymmetrical matrices in this article.By introducing the concept of the adjoint complex eigenvector and by making use of the orthogonality relationship in the complex mode theory,the first-order perturbation solution to the complex eigenvalues is derived.Numerical example shows that this method is efficient and practicable.
-
[1] 胡海昌,参数小变化对本征值的影响,力学与实践,3,2(1981),29-31. [2] Chen,J.C.and B.K.Wade,Matrix perturbation for structural dynamic analysis,AIAA Journal,15,8(1977),1095-1100. [3] Lund,J.W.,Sensitivity of critical speeds of a rotor to changes in the design,ASMSME J.of Mech.Design,102,1(1980),115-121. [4] Chen,J.C.and J.A.Carda,Analytical model improvement using modal test results,AIAA Journal,18,6(1980),684-690. [5] 陈塑寰,弹性结构振动特征值问题摄动法的一般理论,吉林工业大学学报,4(1983),1-12. [6] 方同,多自由度线性阻尼系统的模态分析,固体力学学报,3(1981),312-316.
计量
- 文章访问数: 1869
- HTML全文浏览量: 108
- PDF下载量: 667
- 被引次数: 0