Green Function on Two-Phase Saturated Medium by Concentrated Force in Two-Dimensional Displacement Field
-
摘要: 由于工程场地的对称性,集中力作用下的位移场Green函数在土力学、地震工程学和动力基础方面的应用需以二维模型出现.在理论推导上Green函数的二维模型要比三维模型复杂.根据丁伯阳等人已得到的三维位移场中集中力作用下两相饱和介质位移场Green函数,采用De Hoop与Manolis给出的沿x3方向在无穷域积分方法,得到了集中力作用下两相饱和介质二维位移场Green函数.相比已有的工作,所得结果不仅简单,且是解析解.Abstract: The Green function on two-phase saturated medium by concentrated force has a broad and important use in seismology, seismic engineering, soil mechanics, geophysics, dynamic foundation theory and so on. According to the Green function on two-phase saturated medium by concentrated force in three-dimentional displacement field obtained by Ding Bo-yang et al, it gives out the Green function in two-dimensional displacement field by infinite integral method along X3 direction derived by De Hoop and Manolis. The method adopted in the thesis is simpler. The result will be simplified to the boundary element method of dynamic problem.
-
[1] 丁伯阳,施颖,吕慧.饱和土桩基动力刚度计算中Green函数的边界元解法[A].见:栾茂田 编.岩土力学数值分析与解析方法,第七届全国岩土力学数值分析与解析方法讨论会论文集[C].大连:大连理工大学出版社,2001,195—199. [2] 丁伯阳,樊良本,丁翠红.Green函数法在计算土动力学中的应用[A].见:刘汉龙 编.全国第六届土动力学学术会议论文集[C].南京:河海大学出版社, 2002,825—831. [3] 丁伯阳,丁翠红,孟凡丽.集中力作用下的两相饱和介质位移场Green函数[J].力学学报,2001,33(2):234—241. [4] 丁伯阳,樊良本,吴建华.两相饱和介质中的集中力点源位移场解与应用[J].地球物理学报,1999,42(6):800—808. [5] De Hoop A T.The surface line source problem[J].Appl Sci Res,1958,4(B8) :349—356. [6] Manolis G D.A comparative study on three boundary element approaches to problems in elasto~dynamics[J].Internat J Numer Methods Engrg,1983,19(1):73—91. doi: 10.1002/nme.1620190109 [7] Chen J. Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity Part Ⅰ:Three dimensional solution[J].Internat J Solid Struct,1994,31(2):169—202. doi: 10.1016/0020-7683(94)90049-3 [8] Chen J.Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity Part Ⅱ:Two dimensional solution[J].Internat J Solid Struct,1994,31(10):1447—1490. doi: 10.1016/0020-7683(94)90186-4 [9] 丁伯阳,孟凡丽,胡敏云.两相饱和介质中的静态位移场与震源矢量[J].地震学报,2001,23(3):246—249. [10] Eringen A C,Sububi E S.Elastodynamic. Vol 2. Liner Theory[M].New York,San-Francisco,London:Academic Press,1975,76—138;(中译本)戈革 译.弹性动力学.第二卷 线性部分[M].北京:石油工业出版社,1981.
计量
- 文章访问数: 2452
- HTML全文浏览量: 71
- PDF下载量: 785
- 被引次数: 0