关于“用调和函数表示弹性理论方程组的一般解”的讨论
A Discussion on “Representing General Solution of Equations in Theory of Elasticity by Harmonic Functions”
-
摘要: 本文指出文献[1]给出的"线弹性理论方程组的一般解"只有在三向凸的弹性区域内才成立。
-
[1] Benthem J.P Note on the Boussinesq-Papkovich stress-functions,J.EI as,,9(1979),201-206 [2] Cong,T.T.and G,P.Steven,On the representation of elastic displacement fields in terms of three harmonic functions,J.Elas.,(1979),325-333. [3] Eubanks,R.A.and E.Sternberg,On the completeness of the Boussinesq-Papkovich stress functions,Rat.Mech.and Analysis,5(1956),735-746. [4] Naghdi,P.M,and C.S.Hsu,On a representation of displacements in linear elasticity in terms of three stress functions,J.Math.Mech.,10(1961),233-245. [5] 聂义勇,用调和函数表示弹性理论方程组的一般解,应用数学和力学,7,2(1986),155-160. [6] Stippes,M.,Completeness of the Papkovich Potentials,Quart.App.Math.,26(1969),477-483. [7] 周青、王敏中,关于"用调和函数表示弹性理论方程组的一般解"的讨论,应用数学和力学,8,11(1987),1035-1037.
计量
- 文章访问数: 1887
- HTML全文浏览量: 128
- PDF下载量: 421
- 被引次数: 0