Melnikov函数和Poincaré映射
Meinikov Function and Poincaré Map
-
摘要: 本文中我们给出了Melnikov函数和Poincaré映射的关系,从而给出了Melnikov方法的新的证明.本文的优点是给出了更明确的解,并把次谐分支的Melnikov函数与稳定流形与不稳定流形横截相交的Melnikov函数统一成为一个公式.Abstract: In this paper we give the relationship between Melnikov function and Poincare map, and a new proof for Melnikov's method. The advantage of our paper is to give a more explicit solution and to make Melnikov function for the subharmonics bifurcation and Melnikoy function which the stable manifolds and unstable manifolds intersect transversely into a formula.
-
[1] Li Li, The periodic solution of a class of strongly nonlinear system, Proceedings of International Conference on Nonlinear Mechanics, Science Press (1985). [2] 徐兆,非线性力学中一种新的渐近方法,力学学报,17(1985). [3] Melnikov, V. K., On the stability of the center for time periodic perturbations, Trais Moscow Math. Soc., 12 (1963), 1-57. [4] Chow, S. N, J. K.Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Diff. Eqs., 37 (1980), 357-373. [5] Holmes, P. J, Averaging and chaotic motions in forced oscillations, SIAM J. Appl. Math., 38 (1980). [6] 刘曾荣、姚伟国、朱照宣,软弹簧系统在周期扰动下通向混沌的道路,应用数学和力学,7,2(1986), 103-108.
计量
- 文章访问数: 2183
- HTML全文浏览量: 123
- PDF下载量: 427
- 被引次数: 0