留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正态变差系数的经典限

周源泉

周源泉. 正态变差系数的经典限[J]. 应用数学和力学, 1989, 10(5): 411-418.
引用本文: 周源泉. 正态变差系数的经典限[J]. 应用数学和力学, 1989, 10(5): 411-418.
Zhou Yuan-quan. Classical Limits for the Coefficient of Variation for the Normal Distribution[J]. Applied Mathematics and Mechanics, 1989, 10(5): 411-418.
Citation: Zhou Yuan-quan. Classical Limits for the Coefficient of Variation for the Normal Distribution[J]. Applied Mathematics and Mechanics, 1989, 10(5): 411-418.

正态变差系数的经典限

Classical Limits for the Coefficient of Variation for the Normal Distribution

  • 摘要: 本文推导了正态变差系数的经典精确限.为了满足工程实践的需要,利用Odeh和Owen的计算方法及Brent算法,给出了高精度的可手算的近似限.对不同的置信度γ及样本大小n=1(1)30,40,60,120,样本变差系数ε=0.01(0.01)0.20,计算了正态变差系数的经典精确限表.本文指出,当n≤8,ε≤0.20时,经典精确限Cu略大于Fiducial精确限Cu,F.当n>8.ε≤0.20时.Cu-Cu,F<5×10-6.
  • [1] 周源泉,正态变差系数的Fiducial及Bapes限,机械工程学报,22,3(1986),67-74.
    [2] Mckay,A.T.,Distribution of the coefficient of variation and extended t-distribution,J.R.Statist.Soc.,95(1932),695-698.
    [3] Pearson,E.S.,Comparison of A.T.Mckay's approximation with experimental sampling results,J.R.Statist.Soc.,95(1932),703-704.
    [4] Fieller,E.C,A numerical test of the adequacy of A.T.Mckay's approximation,J.R.Statist.Soc.,95(1932),699-702.
    [5] Koopmans,L.H.,D.B.Owen and J.I.Rosenblatt,Confidence intervals for the coefficient of variation for the normal and lognormal distribution,Biometrika,51(1964),25-32.
    [6] Johnson,N.L.and B.L.Welch,Application of the noncentral t-distribution Biometrika,27(1940),362-381.
    [7] 周源泉,正态可靠寿命的玩yes限、Fiducial限及经典限,电子学报,14,2(1986),46-52.
    [8] 山内二郎,《统计数值表》,JSA(1972).
    [9] Odeh,R.E.and D.B.Owen,Tables for Normal Tolerance Limits,Sampling Plans and Screening,Dekker(1980).
    [10] Brent,R.P.,An algorithm with guaranteed convergence for finding a zero of a function,Comput.J.,14(1971),422-425.
  • 加载中
计量
  • 文章访问数:  1770
  • HTML全文浏览量:  107
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  1986-08-27
  • 刊出日期:  1989-05-15

目录

    /

    返回文章
    返回