非水平分层区域Helmholtz边值问题的解析解
The Analytical Solution for Helmholtz Boundary Problem in Non Horizontally Stratified Domains
-
摘要: 在(x,y,z)直角坐标系中,N个物性参数不同的区域Dj(j=0,1,…,N-1)充斥着整个空间,这些区域间的分界面是非水平的光滑曲面Sj,j+1下面的边值问题称为非水平分层区域Helmholtz边值问题:∇2H(j)+KjH(j)=0(j=0,1,…,N-1)(H(0)-H(1))S0.1=δ(S)(δ(S):广义δ-函数)(H(j)-H(j+1))Sj,j+1=0(j=1,…,N-2)本文给出了此问题的解析解.Abstract: There are N domains Dj(j=0,1,...,N-1) of different physical parameters in the whole space and their interfaces Sj,i+1 are non-horizontally smooth curved surfaces. The following boundary problem is called Hclinholiz boundary problem:∇2H(j)+KjH(j)=0 (j=0,1,…,N-1)(H(0)-H(1))S0.1=δ(S) (δ(S):generalized function)(H(1)-H(i+1))Sj,j+1=0 (j=0,1,…,N-2)The analytical solution of the above problem is given in this paper.
-
[1] Голузин Г.М.,Геомеmрuческая Теорuя Функчuu Комnлелсно Переменноiо,Гостехиздат(1952) [2] Векуа И.Н.,Нобые Меmобы Рещенuя Злunmuческuх Урабненuu,Гпстехиздат(1948) [3] Мусхелишвили Н.И.,Сuнчмярные Инmеiралыные Урабненuя,Физматтнз(1962) [4] Gilbert,R.P.,Function Theoretic Methods in Partial Differential Equation,The Academic Press(1969). [5] 路见可,《解析画数边值问题》,上海科学技术出版社(1987). [6] Conway,John B.,Function of One Comples Variable,2nd ed.,Springer-Verlag Press,New York(1978). [7] Wait J.R.,Fields of a line current source over a stratified conductor,Appl.Sci.Res.,Sec.B.,3(1953),1-15. [8] Gordon,A.N.,The field indueed by an oscillating magnetic dipole outside a semi-infinite conductor,Mech.and App.Math.,4(1951),106-115.
计量
- 文章访问数: 1835
- HTML全文浏览量: 130
- PDF下载量: 433
- 被引次数: 0