留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意形状孔口单边裂纹问题的边界配位解法

王元汉 李春植

王元汉, 李春植. 任意形状孔口单边裂纹问题的边界配位解法[J]. 应用数学和力学, 1990, 11(7): 625-634.
引用本文: 王元汉, 李春植. 任意形状孔口单边裂纹问题的边界配位解法[J]. 应用数学和力学, 1990, 11(7): 625-634.
Wang Yuan-han, Li Chun-zhi. The Solution of a Crack Emanating from an Arbitrary Hole by Boundary Collocation Method[J]. Applied Mathematics and Mechanics, 1990, 11(7): 625-634.
Citation: Wang Yuan-han, Li Chun-zhi. The Solution of a Crack Emanating from an Arbitrary Hole by Boundary Collocation Method[J]. Applied Mathematics and Mechanics, 1990, 11(7): 625-634.

任意形状孔口单边裂纹问题的边界配位解法

The Solution of a Crack Emanating from an Arbitrary Hole by Boundary Collocation Method

  • 摘要: 本文提出了一组复应力函数,采用边界配位方法对不同形状孔口(包括圆、椭圆、矩形及菱形孔口)的单边裂纹平板的应力强度因子进行了计算.计算结果表明,对长度和宽度远大于孔口和裂纹几何尺寸的试件,配位法与用其他方法所得的无限大板含圆或椭圆孔边裂纹问题的解符合得很好.同时,对其他孔口问题,特别是有限大板情形,本文给出了一系列计算结果.本文所提出的函数及计算过程可以应用于任意形状孔口单边裂纹平板的计算.
  • [1] Bowie,O.L.,Analysis of an infinite plate containing radial cracks originating at the boundary of an infinite circular hole,Journal of Mathematics and Physics,35(1956),60-71.
    [2] Tweed J.and D.P.Rooke,The distribution of stress near the tip of a radial crack at the edge of a circular hole,International Journal of Engineering Science,11(1973),1185-1195.
    [3] Rubinstein A.A.and A.M.Sadegh,Analysis of a crack emanating from a circular hole in a loaded plate,International Journal of Fracture,32(1986),47-57.
    [4] Gross,B.,J.E.Srawley and W.F.Brown,Stress intensity factor for a single-edge notch tension specimen by boundary collocation method,NASA TN D-2395(1965).
    [5] Gross,B.and J.E.Srawley,Stress intensity factors for single-edge-notch specimens in bending or combined bending and tension,NASA TN D-2603(1965).
    [6] Gross,B.and J.E.Srawley,Stress intensity factors for three point bend specimens by boundary collocation,NASA TN D-3092(1965).
    [7] Kobayashi,A.S.,R.B.Cherepy and W.C.Kinsel,A numerical procedure for estimating the stress intensity factor of a crack in a finite plate,Journal of Basic Engineering,86(1964),681-684.
    [8] Wilson,W.K.,Numerical method for determining stress intensity factors of an interior crack in a finite plate,ASME Journal of Basic Engineering.93(1971),685-690.
    [9] Newman,J.C.,An improved method of collocation for the stress analysis of cracked plates with various shaped boundaries,NASA TN D-6376(1971).
    [10] Muskhelishvili,N.I.,Some Basic Problems of Mathematical Theory of Elasticity,second English ed.,Noordhoff(1975).
    [11] Kanninen,M.F.,and C.H.Popelar,Advanced Fracture Mechanics,Oxford(1985).
    [12] Rooke,D.P.and D.J.Cartwright,Compendium of Stress Intensity Factors,HMSO(1976).
    [13] Berezhnitskii,L.T.,Propagation of cracks terminating at the edge of a curvilinear hole in a plate.Sovict Materials Science,2(1966),16-23.
    [14] Tada,H.,P.C.Paris and G.R.Irwin,The Stress Analysis of Cracks Handbook,Del Research Corporation,Pennsylvania(1973).
  • 加载中
计量
  • 文章访问数:  2134
  • HTML全文浏览量:  107
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  1988-11-10
  • 刊出日期:  1990-07-15

目录

    /

    返回文章
    返回